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FOREWORD

The research documented herein was carried out over a two year period beginning in

FY'87; and represents the first phase of a multi-year plan to develop a system of methods,

algorithms and software for the on-orbit identification of structural dynamic parameters

and system transfer function characterization for control of large space platforms and flexi-

ble spacecraft. An interim objective is to demonstrate technology readiness for application

of on-orbit identification in ground-based and flight experiments. Specific research areas

include development of non-parametric frequency domain and parametric time domain

techniques and algorithms, on-line methods for initialization of recursive and data block

algorithms, globally convergent identification methods, and integrated identification and

robust control.

Control performance of spacecraft with extended structures and on-orbit assembly/

deployment operations such as manned and unmanned space platforms, large antennas, and

large optical reflectors or interferometers will be very sensitive to inevitable uncertainties in

predicted dynamics. Past experience indicates that in-flight instabilities may occur because

of deficiencies in the pre-flight dynamical model embedded in the on-board control system

design. The activity under this research plan is unique in that, in addition to conducting

innovative research in on-orbit identification methods, it also develops the technology to a

level of readiness to support advanced spacecraft control subsystem designs and automated

in-flight tuning of plant models and controller performance.

The problem of on-orbit identification differs significantly from the problem of iden-

tification performed on the ground. In particular, the actuators and sensors are severely

restricted in number, type, and placement, the time allocated for experimentation is rela-

tively short, and data which is required must often be processed quickly for use in controller

tuning, etc. These requirements are quite challenging and require a significant advance

over techniques presently used for ground testing.
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TECHNICAL ABSTRACT

The analysis, design, and on-orbit tuning of robust controllers require more infor-

mation about the plant than simply a nominal estimate of the plant transfer function.

Information is also required concerning the uncertainty in the nominal estimate, or more

generally, the identification of a model set within which the true plant is known to lie. The

identification methodology that was developed and experimentally demonstrated makes

use of a simple but useful characterization of the model uncertainty based on the output

error. This is a characterization of the "additive uncertainty" in the plant model, which

has found considerable use in many robust control analysis and synthesis techniques. The

identification process is initiated by a stochastic input u which is applied to the plant p

giving rise to the output y. Spectral estimation (h = P_,y/Puu) is used as an estimate of

p and the model order is estimated using the product moment matrix (PMM) method. A

parametric model _" is then determined by curve fitting the spectral estimate to a rational

transfer function. The additive uncertainty _,,, = p- _ is then estimated by the cross-

spectral estimate A = Pu_/P_,_, where e = y - _ is the output error, and _" = _u is the

computed output of the parametric model subjected to the actual input u. The experi-

mental results demonstrate the curve fitting algorithm produces the reduced-order plant'

model which minimizes the additive uncertainty. The nominal transfer function estimate

and the estimate A of the additive uncertainty _m are subsequently available to be used

for optimization of robust controller performance and stability.
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EXECUTIVE SUMMARY

On-orbit system identification of large flexible space systems enables on-line design

of robust, high performance control systems. This capability has the potential to improve

the performance robustness and control accuracy under operational constraints and envi-

ronmental uncertainties far beyond that attainable by using nominal system descriptions

obtained from ground testing and analysis alone.

This research successfully demonstrates that on-orbit identification is a realistic objec-

tive. A novel automated frequency domain identification methodology was developed and

experimentally verified on the JPL/AFAL experiment facility which is designed for emu-

lation of on-orbit testing and control scenarios. The testbed structure is shown in Figure

E-1. The basic approach of this research is to nonparametrically identify the transfer func-

tion of the system using different forms of excitations and then obtain a parametric model

of the system by curve fitting the spectral estimates to a rational transfer function. The

model order is estimated using the product moment matrix. Uncertainty bounds needed

for on-line robust control designs and fine tuning are estimated using the cross-spectral

analysis of the output error. Thus, the approach avoids recreating in an on-orbit environ-

ment the extensive instrumentation required for ground testing and makes efficient use of

the actuators and sensors already available on the space system for control applications.

Some practical issues associated with the approach taken by this research for on-

orbit identification and other results obtained from both the theoretical and practical

developments in the course of this work on the facility testbed are discussed as follows:

1) The system identification is being designed to operate with a high degree of autonomy

and restrict the "human in the loop" requirements.

2) It is well known that frequency domain curve fitting techniques based on equation error

representations have implicit high frequency emphasis. This problem is overcome

in the present study by using an iterative reweighting scheme. A novel smoothing

technique is also introduced to alleviate the problem of resonances estimated early

in the sequence reinforcing themselves in the reweighting scheme and becoming fixed

points of the iteration.

3) The additive uncertainty is estimated by the output error cross-correlation. This

approach is shown to provide a superior estimation of additive uncertainty than the

traditional approach of utilization of the curve fitted error.

4) Input signals considered here are wideband, narrowband, and sine-dwell processes.

On-line capability of conducting digital filter design is available to support other input

designs. The issue of "optimal" input design subject to on-orbit constraints is a topic

for continuing investigation.
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5) Special techniques for Sine-Dwell gain and phase estimation were required to avoid

errors associated with using sampled data sinusoidal inputs. Standard correlation

techniques produced very poor results, particularly with respect to the low frequency

structural modes. A recursive least squares algorithm with exponential forgetting was

developed to ensure robust and accurate estimation for this class of problems.

6) The length of the experiment time is driven by the frequency of the lowest mode. This

has strong relevance to the on-orbit time allocated to performing on-orbit identifica-

tion. It is shown that a reasonable experiment time provided a good assessment of

the low frequency component of the structure, i.e., approximately 27 minutes for the
0.09 Hz mode of the structure.

7) The present investigation considers identification of single-input single-output transfer

functions. Multiple-input multiple-output system identification would also be accom-

modated with the present scheme by processing each input/output pair separately.

More efficient processors are desired for the multiple-input multiple-output case.

s) A two step approach is taken for the determination of model order. First, an initial

estimate of the model order is obtained using a product moment matrix (PMM) test.

Second, the optimal order in the vicinity of this estimate is searched for by a sequence

of curve fits with varying orders. The opt.imal order is judged by comparing the quality

of the output error profiles for each curve fit. Although this approach appears to work

well in practice, the eflFiciency of the search depends on the initial estimate from the

PMM test.

9) Two approaches have been developed for implementing the product moment ma-

trix test. The deterministic algorithm PMMD (i.e., exact assuming no measurement

noise), gave consistently better performance than the stochastic algorithm PMMS

(which approximates sums by correlations). However, even PMMD had a tendency to

underestimate the model order when compared to the best estimate obtained based on

minimizing output error. Methods to improve the PMM estimate in the future include

proper choice of threshold value (i.e., on the determinant or determinant ratios), and

proper treatment of noise disturbance effects.

10) The experiment results demonstrate that the identification algorithm developed pro-

duces the reduced-order plant model which minimizes a uniform bound on the additive

uncertainty.
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Chapter 1. IDENTIFICATION SYSTEM DESCRIPTION

1.1 Introduction and Objectives

This report summarizes the development and experimental verification of a frequency

domain identification methodology for large space structures. This methodology is focused

to support the following objectives

1) Estimation of system quantities useful for robust control analysis and design

2) To perform system identification in an on-orbit environment

3) Automated operations

The overall functional architecture of the identification system is depicted in Fig.

1.1-1, and will be discussed in detail in Sect. 1.2. Briefly, the basic approach is to non-

parametricaliy identify the sampled-data plant p(c j_T) in the frequency domain using ei-

ther stochastic or sine-dweU input excitation experiments, and then to obtain a parametric

model/_(e j_T) of the transfer function by curve-fitting techniques. Finally, a cross-spectral

analysis of the output error is used to determine the additive uncertainty 6,_ = p-/_ in the

estimated transfer function. The nominal transfer function estimate/3 and the estimate

A of the associated additive uncertainty _m are then ready to be used for robust control

analysis and design.

Some special features of the scheme are outlined below,

• On-line digital filter design to support on-orbit optimal input design and data com-

position (Sect. 2.3)

• Data composition of experimental data in overlapping frequency bands to overcome

finite actuator power constraints (Sect. 2.5)

• Recursive least squares sine-dwell estimation to accurately handle digitized sinusoids

and low frequency modes (Sect.2.6)

• Automated estimation of model order using a product moment matrix method (Sect.

2.7).

• Sample-data transfer function parametrization to support digital control design

• Curve fitting algorithm with iterative reweighting technique to assure minimum vari-

ance estimation (Sect. 2.9)

• Robust root solvers which accurately factorize high order polynomials to determine

frequency and damping estimates from plant denominator coefficients (Sect. 2.9.5)

• Output error characterization of model additive uncertainty to support robustness

analysis ( Sect. 2.10)

The test bed for this effort is the large ground test structure developed by JPL/AFAL

for emulation of on-orbit testing and control scenarios. The experiment is housed in the

JPL celestarium, and has been described in detail [1]. A brief overview of the physical

structure is provided in Sect. 1.3 as background for the identification experiments.



The overall algorithm and software development required to implement the identifi-

cation system has been quite extensive. A brief historical account may be helpful. Algo-

rithms were first developed on IBM PC-AT's by individual analysts responsible for each

task. Software developed at this stage was mostly in the form of scientific subroutines

and diagnostic programs. Original software was written as required to support algorithm

development, and a multitude of Fortran scientific subroutines were utilized from vari-

ous sources (e.g., Numerical Recipes [2], IEEE Programs for Digital Signal Processing [3],

Lawson and Hanson [4]). Modularization of the project in this fashion allowed extensive

development and optimization of individual algorithms before integration was required.

Needless to say, many difficult analytical and numerical problems were overcome at this

stage. The wisdom gained is summarized in Chapter 2, along with Fortran code for various

special purpose subroutines (software developed at this stage will compile and run with

Lahey Fortran on a PC-AT computer).

Debugged software subroutines were then "handed off" for integration into the identi-

fication system software. System software was developed on the GC-VAX (in anticipation

of rehosting on the experiment facility micro-VAX) and was designed to meet the exper-

iment interface requirements given in [5]. The system software was then rehosted on the

facility micro-Vax and final integration was completed. The final menu layout is outlined

in Sect. 1.2, and the final software specification document is given in [14].

The results of the identification experiments are summarized in Chapter 3, where

they are organized according to a typical on-orbit testing scenario. All of Chapter 3

is comprised of real experimental data, in contrast to much of the development work in

Chapter 2 which was performed on simulated data. Very little difference was found between

algorithm performance on real and simulated data. In retrospect, this appears to be due

essentially to the robustness of the numerical design of the individual algorithms, rather

than the ideality of the plant or cleanliness of the data.

Several documents will be referenced in the course of this report which provide addi-

tional information on various aspects of the JPL/AFAL structure and system identification

efforts. This includes details on the construction and modeling of the physical structure

[1][6], the overall system identification experiment plan [7], a detailed description of the

final experimental software [8], and an overview of the ID software subsystem using sim-

ulated data [9]. Furthermore, the underlying theory behind the nonparametric frequency

domain identification approach and curve fitting can be found in [10], and the basic phi-

losophy of the on-orbit identification in support of on-line control redesign is discussed in

[II][12][13].
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1.2 Functional Architecture and Software Description

The functional architecture is outlined schematically in Fig. 1.1-1. The flow of the

various processes is menu driven and controlled from a single human operator. The overall

menu layout is given in Fig. 1.2-1. Although a user's manual for the identification system is

beyond the scope of this report, we will try to present an overview of the system software,

and typical use of the system functions. If more information is desired, specific use of

individual menus and the internal workings of the software subroutines can be obtained

by consulting various sections of Chapter 2, and typical sequences of menu commands

are exemplified in the experimental demonstrations of Chapter 3. The complete software

description as well as the FORTRAN listing of the integrated identification system software

is given in [14].

The functional flow of the identification system is described below. Bold type para-

graphs provide a summary of the system functions. Additional detail on any particular

function is found in the intervening ordinary type paragraphs.

1) The plant p(e jwT) is excited by one of a variety ofpossible input excitations

u(kT) of both stochastic (i.e., wideband or narrowband) or deterministic

(i.e._ sine-dwell) types giving rise to plant output y(kT).

The wideband input is simply a random number generator which produces indepen-

dent uniformly distributed variates (Sect. 2.2, MENU(4,4,2)). The narrowband input is

produced by digitally filtering the wideband input according to desired spectral charac-

teristics (Sect. 2.4, MENU(4,4,2)). The capability for on-line digital filter design is pro-

vided as part of the system software (Sect. 2.3, MENU(4,4,9)). The sine-dwell inputs are

piecewise constant approximations to true sinusoids, consistent with the sample-and-hold

discretization (Sect. 2.6, MENU(4,4,3)).

Wideband experiments can also be constructed artificially using a technique which

we call data composition (Sect. 2.5, MENU(4,4,8)). This is done by designing a bank of

bandpass filters to cover a wideband portion of the frequency axis, and then running a

separate experiment for each bandpass process. The input and output sequences from all

bandpass experiments are then composed (i.e., added together respectively) to give data

for what is effectively a single wideband experiment. To realize such a wideband excitation

in a single experiment would otherwise be impossible due to actuator power constraints.

2) The plant transfer function is identified nonparametrically by spectral estl-

mat]on (in the case of stochastic inputs) and by gain and phase estimation

in the case of sine-dwell inputs.

For experiments using stochastic input excitation, spectral estimation (Sect. 2.8,

MENU (4,4,4)) is invoked to compute the correlations Ruu, Ryy, Ru_ and spectral estimates

P_,u, Puu, Puy from the input and output data, as well as the plant transfer function estimate

from the cross-spectral estimate h = Puu/Puu.

For experiments using sine-dwell input excitation, the gain, phase, real and imaginary

parts of p(e i_T) at sine-dwell frequencies are determined in real-time using a recursive

least squares estimator with exponential forgetting factor (Sect. 2.6, MENU(4,4,3)). This

approach is particularly well suited to provide accurate estimation using sampled-data
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sinusoidal responses and to operate in the presence of low frequency resonances. The time

constant for the forgetting factor is typically chosen to be several cycles of the sine-dwell

response. The sine-dwell estimates of plant gain, phase and real and imaginary parts of

p(e j_T) over several frequencies can be stored for later use by the transfer function curve

fitting routine.

3) Anticipating parametric curve fitting to follow, the model order is esti-

mated using a product moment matrix (PMM) test.

Some efforts have been made to automate the determination of model order and hence

overcome much of the guessing and "human in the loop" efforts typically associated with

this task. The approach is to get an initial estimate of the model order by using a PMM

test, and then search for the optimal order in the vicinity of this estimate by a sequence of

curve fits with varying orders. The quality of each fit is judged by the output error profile.

Several product moment matrix algorithms have been designed, tested and can be

invoked (Sect. 2.7, MENU(4,4,5)). One form (PMMD, Sect. 2.7.3) operates on raw data,

and generates the PMM directly from the plant input and output. Another form (PMMS,

Sect. 2.7.4) assumes ;statistical stationarity for the underlying process and generates the

PMM from the smoothed estimates of the auto and cross covariances produced from the

spectral estimation software. It was found that the algorithms which operated on raw data

were much superior. This is appaxantly due to the fact that the method is exact on finite

data lengths (assuming no noise disturbances) and hence avoids stationarity and statistical

convergence assumptions otherwise required when using covariance data.

4) The plant is identified parametrically by fitting transfer function coeffi-

clents to the nonparametrlc data. Model order is determined by a sequen-

tial search starting at the PMM estimate.

A parametric transfer function estimate/_ is determined by curve fitting the coefficients

of a rational transfer function (Sect. 2.9, MENU(4,4,6)), to the nonparametric frequency

domain data. The data in this case is specified to be the spectral estimate h = Puy/Puu

and/or sine-dwell estimates. The model order is determined by successively increasing

the number of modes in the curve fit, starting at the PMM estimate, until an adequate

output error profile is observed (see output error discussion next). The curve fit involves

the use of a least squares algorithm (Sect. 2.9.3), with a special iterative reweighting tech-

nique (Sect. 2.9.4), to remove high frequency emphasis (typically associated with equation

error methods), and to assure minimum variance estimation of the transfer flmction coef-

ficients Resonant frequencies and damping estimates are automatically found by robustly

factorizing the plant denominator polynomial with a special purpose routine (Sect. 2.9.5).

5) The output error is determined to characterize the quality of the paramet-

ric transfer function estimate, and for later use in robust control analysis

and design.

The output error e = pu -_u is computed by subtracting the predicted output _ =/3u

from the measured data y = pu (Sect. 2.10) and then the additive uncertainty 5m = p-/3

is estimated by the cross-spectral estimate A = P,_/Pu,. The nominal plant transfer

function estimat, e/3 and the estimate A of the additive uncertainty 5_ can then be used



directly for robust control analysisand design. The motivation and usefulnessof using the
output error characterization of additive uncertainty, and its role in robust control design
is discussedin Sect. 2.10.

1.3 Testbed Description

Experimental demonstration and verification of the integrated ID software perfor-

mancewere conducted on the JPL/AFAL Flexible Structure Testbed. Extensive considera-

tion was put into the design of this facility to support a three-year, four-phase experiment

plan in the technology areas of static shape determination and control, unified modelling

and control, robust and adaptive control, and system identification. The final design of

an 3-D antenna-like structure was adopted as it exhibits many characteristics of a typical

large space structure. These include many low frequency modes, densely packed modes,

low structural damping, and three-dimensional structural interaction among components.

In this section, a brief description of the testbed facility is given. Detail description can

be found in [1].

1.3.1 Configuration

The main component of the testbed facility is shown in figure 1.3-1. It consists of

a central rigid hub to which are attached 12 ribs. The ribs are coupled together by two

rings of pretensioned wires. Functionally, the wires are intended to simulate the coupling

effects of a reflective mesh installed over the rib frame in an actual antenna. The ribs

are 2.25 m in length. The hub is of radius 0.6 m, making the dish structure 5.7 m in

diameter. The tensioning wires are installed in two rings at approximate diameters of 3 m

and 4.8 m. As intended to achieve low modal frequencies, the ribs are very flexible. Stand

alone, they are unable to support their own weight without excessive droop. To prevent

structural collapse due to gravity, each rib is supported at two locations along its free

length by levitators. Each levitator is constituted by a counterweight attached to the rib

with a wire which passes over a low-friction pulley. The support locations were calculated

to minimize the rms shape deviation along the rib from the root to tip. The calculations

led to supporting the rib at the 40% and 80% points which are 0.9 m and 1.8 m from the

rib root, the same locations for coupling wire attachments. A flexible boom is attached

to the central axis of the hub and has a mass at its lower end to simulate the feed horn

of an antenna of the secondary mirror assembly or an optical system. The original boom

length was 3.6 m long, but for the convenience of conducting the experiment at ground

level, a second, 1 m long boom is being used for most of the Phase I experiments. The

feed mass is 4.5 kg. The hub is mounted to a backup structure via a two-axis gimbal

which allows rotational freedom about two perpendicular axes in the horizontal plane.

The gimbal bearings support roughly one quarter the weight of the ribs, the entire weight

of the hub, boom, and feed, and their respective sensing and actuation devices.

1.3.2 Actuators

Each of the ribs can be excited dynamically by a single rib-root actuator with a lever

arm of about 0.3 m from the hub attachment point. Each rib-root actuator consists of
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a speaker-coil type device which reacts against a mount rigidly attached to the hub. In

addition, two speaker coil type actuators are mounted on the hub to provide controlled

torquing about the two gimbal axes. These hub torquers apply linear forces to the hub at

its outer circumference to yield the required torques about the axis of rotation. Together,

these 14 actuators are capable of controlling all flexible modes of the structure. The

location of these actuators is shown in figure 1.3-2, together with the assignments of the

rib numbers. As is, the axes of rotation are construed to be along rib#l and rib#7, and

rib#4 and rib#10, with respective rotations excited by hub actuators HA10 and HA1. For

convenience, the axes are labelled as the 1-7 axis and 4-10 axis in all later references.

1.3.3 Sensors

Each of the 24 levitators is equipped with an incremental optical encoder which mea-

sures the relative angular rotation of the levitator pulley. These angular measurements

are then translated into the vertical motion of the ribs at the levitator/rib attachment

points, relative to the backup structure. Additional linear variable differential transform-

ers (LVDT) sensors are provided to determine the rib displacment measurements at four

evenly spaced rib root actuator locations. Hub angular rotations about the two axes are

measured by two rotary variable differential transformers (RVDT) mounted directly at

the gimbal bearings. The locations of these 30 sensors are also shown in figure 1.3-2. As

assigned, angular displacement about the 1-7 axis are measured by sensor HS1, and that

about the 4-10 axis by sensor HS10.

1.3.4 Computer System

The primary function of the computer is to implement the various algorithms for

different control and identification technology experiments. Through the Data Acquisition

System, the computer samples the various sensors, uses the data to update some sort

of state estimation filter, computes appropriate actuator outputs, and then sends the

commands to the actuators. For the identification experiments here, the computer merely

performs sampling of the sensor samplings and actuator command implementations. The

computer system selected for the experiment facility is the DEC VAX Workstation II

comprised of 5 MB of main memory, dual 819.2 KB floppy disk drives, 71 MB hard disk,

and a 95 MB tape cartridge recorder, equipped with a graphic display terminal and a

dot matrix printer as well. The system software is written in Ada, while the experiment

softwares are written in a compatible version of FORTRAN.

1.3.5 Data Acquisition System

The Data Acquisition System (DAS) is to sample the sensors and to send commands

to the actuators under MicroVAX II control via a high speed parallel interface. It absorbs

the time delays associated with sensing and actuations, and frees the computer to handle

other computations associated with control experiments. The DAS is housed in a separate

enclosure containing the power supplies, amplifiers, A/D and D/A converters, and other

circuits needed to interface the sensors and actuators with the computer. The DAS is built

around an 8088 microprocessor to direct its operation. Anticipating future upgrade of the



experiment facility, the existing DAS hardware and software are capable of accommodating

additional I/O channels.

1.3.6 Dynamic Model

The finite element method was used to generate a system model for the testbed struc-

ture. Simply, the method approximates the original distributed parameter system with

its unlimited number of degrees of freedom by a discrete system with finite dimensional-

ity. The ribs and boom are each divided into a finite number of elements. Displacements

and slopes at the element boundaries are utilized as the finite element degrees of freedom.

Displacements of the ribs and boom between within the elements are then approximated

by a cubic spline function. "Mass" and "stiffness" matrices are generated from the matrix

quadratic expressions which approximate, respectively, the kinetic and potential energies

of the continuous parameter system in terms of the finite element degrees of freedom. Nor-

mal modes of the system can then be obtained by solving a generalized matrix eigenvalue

problem.

Figure 1.3-3 shows the finite element degrees of freedom assigned to a typical rib.

The rib is divided into a 10 beam-type element and hence has 20 finite element degrees of

freedom. Similar degrees of freedom can be assigned to the boom, except for the fact that

the boom can displace in the two orthogonal directions in the horizontal plane. The boom

therefore has a total of 40 finite element degrees of freedom. For the hub, it is modelled

as a stiff circular ring constrained to rotate about the two perpendicular gimbal axes. As

such, the generalized eigenvalue problem

Kx = w2Mx (1.3.1)

resulted can have a dimension as high as 308, depending on how the rib to hub interface

is handled. In eqn. (1.3.1), K is the stiffness matrix, M is the mass matrix, x is the

eigenvector, and w is the frequency. To reflect the actual physical system to its fullness,

the mass and stiffness matrices were formulated taking into account the inertia of the

levitator pulleys and the mass of the counterweights, the tension in the boom caused by

gravity, and compression in the ribs caused by the coupling wires.

While the eigenvalue problem of eqn. (1.3.1) is a standard problem and presents no

special difficulties for tile several solution algorithms available, it is large and its solution

can be expensive computationally_ Fortunately, it is possible to reduce the dimension of

the problem through the use of cyclic reduction. The symmetry of the dish structure makes

it possible to separate variables and express a given mode shape as the product of a shape

function which is independent of the rib number and a scalar function which depends on

the rib number. This scalar function, which reflects the circular dependence of the given

mode shape, can be written by inspection in the following form:

Sin
2rrik ]_+¢k (1.3.2)

n
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where i is the number of the rib, n is the number of ribs in the dish structure ( 12 in this

case), and k is the circular wave number for a given mode ranging from k = 0 to k = 6, and

Ck is phase angle depending on the coordinate system transfromation. The shape function

is obtained by solving a generalized eigenvalue problem of now a much reduced dimension

of 44. A mode is thus completely specified by its frequency, circular wave number, phase

angle, and the boom and rib shape functions.

1.3.7 Mode Shapes and Frequencies

Mode shapes of the structure can be grouped according to their circular wave number

k. For k = 0, 2, 3, 4, 5, 6, all reaction forces on the hub caused by rib motion cancel out,

and thus neither hub nor boom motion is involved in these modes. These modes behave as

if the hub was clamped in its resting position and hence are termed dish modes. As such,

degrees of freedom of the hub and boom can be taken out, reducing further the dimension

of the eigenvalue problem associated with the dish modes to 20. In addition, the dish

modes corresponding to k -- 2, 3, 4, 5 are each two-fold degenerate, while degeneracy does

not exist for k = 0and k=6. This is due to the fact that for k= 0 andk =6, modal

excitations about the two orthogonal gimbal axes generate identical motion for the ribs

and thus constitute one mode. The mode shapes and frequencies of the first 20 dish

modes are shown in figure 1.3-4 and Table 1.3-1, respectively. Only one mode shape is

shown for the degenerate dish modes with the same circular wave number k; the other

mode shape can be obtained by adding to it a different phase angle.

For k = 1, the reaction forces on the hub do not cancel, and the modes appear as a

rocking of the entire structure. These modes are called boom-dish modes as they involve

motion of the boom, hub, and dish structure together. For a perfectly symmetric structure,

the "boom-dish modes" are degenerate. However, for the present structure of which the

hub is not quite symmetric, they are not. Table 1.3-2 show the modal frequencies of the

first 12 boom-dish modes, 6 for each of the gimbal axes. The small differences in the

frequency values reflect the slight hub non-symmetry. Figure 1.3-5 shows the boom-dish

mode shapes. Only one set of modes shapes is shown because mode shapes corresponding

to two pivot axes are nearly identical.

It is to be noted that the dish modes, with their symmetric mode shapes about the hub,

are not controllable and observable from the hub. Thus, hub actuation would manage only

to excite and control the boom-dish modes. Since these modes constitute a small subset

of M1 system modes, and they have larger frequency separation, they provide a good first

test of the performance of the integrated ID algorithms. As a result, the identification

experiments described in this report investigate only the boom-dish modes via actuation

at the hub. As experience and confidence in experimentation and algorithm performance

grow, the dish modes will be tackled in phase II identification experiments.
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Table 1.3-1 Modal Frequencies of Dish Modes

Mode Frequency Wave Number

Number (Hz) k

1

2

3

4

5

6

7

8

9

i0

Ii

12

0.210

0 253*

0 290*

0 322*

0 344*

0 351

1 517

1 533*

1 550*

1 566*

1 578*

1 583

0

2

3

4

5

6

0

2

3

4

5

6

* two-fold degenerate modes

(i) 0.210 Hz, k=0 (3) 0.290 Hz, k=3

(2) 0.253 Hz, k=2 (4) 0.322 Hz, k=4

Fig. 1.3-4 Mode Shapes of Dish Modes.
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(5) 0.344 Hz, k=5 (9) 1.550 Hz, k=3

(6) 0.351 Hz, k=6 (I0) 1.566 Hz, k-4

(7) 1.517 Hz, k=0 (Ii) 1.578 Hz, k--5

(8) 1.533 Hz, k=2 (12) 1.583 Hz, k--6

Fig. 1.3-4 Mode Shapes of Dish Modes (Continued).
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Table 1.3-2 Modal Frequencies of Boom-Dish Modes

Frequency
Mode (Hz) . Wave Number

Number k

1-7 Axis 4-10 Axis

1 0.091

2 0.628

3 1.687

4 2.682

5 4.897

6 9.892

0 091

0 616

1 685

2 577

4 858

9 822

1

1

1

1

1

1

(i) 0.09 Hz (4) 2.7 Hz

(2) 0.6 Hz (5) 4.9 Hz

(6) 9.9 Hz
(3) 1.6 Hz

Fig. 1.3-5

(Circular wave number k = i)

Mode Shapes of Boom-Dish Modes.
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Chapter 2. THEORY, ALGORITHM, AND SOFTWARE DEVELOPMENT

2.1 Introduction

In this chapter, we present the results of the theoretical, algorithmic and software

development efforts required to successfully implement the frequency domain identification

system. Algorithms were developed and optimized by independent researchers on IBM PC-

AT's in the form of scientific subroutines and diagnostic programs, before being integrated

into the system software. This chapter summarizes the major theoretical, analytical and

numerical problems which were overcome at this earlier stage of development, and includes

Fortran code for various special purpose subroutines which were developed as part of this

task. The software in this chapter was developed to compile and run using Lahey Fortran

on a PC-AT computer.

2.2 Wideband Excitation

Wideband excitation utilizes a stochastic, white process as the input sequence. Such

an input is characterized by the fact that it has uniform energy density for all frequency

starting from 0 Hz going up to one half of the sampling frequency. The available actuation

energy is thus being evenly distributed throughout the range. All the structural modes

within this "broadband" are excited for observation and analysis. Wideband excitation

can be performed in its own right or to serve as preliminary survey to guide subsequent

narrowband or sine-dwell investigation for more detail analysis.

In the experiment software, the wideband excitation is set up via the following menu:

MENU(4,4,2)

WIDEBAND EXCITATION PARAMETERS

0 - Exit

51 - PARAM(51) 0. ;WBMEAN- mean of excitation

52 - PARAM(52) 1.5 ;WBSTAN= amplitude of excitation

NARROWBAND EXCITATION PARAMETERS

71- PARAM(71) 100.0 ;PER= (narrow/wideband)*100 excit, power

72 - PARAM(72) 2.0 ;NBFIL= narrowband fltr storage location

Only parameters WBMEAN and WBSTAN need to be set to determine the wideband

excitation input. As there is a saturation limit for the actuators, a uniformly distributed

white random sequence is chosen for the present experimentation. Actuator saturation

can be avoided by selecting appropriate parameters WBMEAN and WBSTAN which are

respectively the mean and maximum excursion about the mean of the uniformly distributed

sequence. For this work, WBMEAN is set at WBMEAN=0. Since only hub actuation is

being utilized, WBSTAN is chosen to be less than 2 nt-m which is the maximum output

from the hub torquers. The nominal value for WBSTAN is 1.5 nt-m. At the beginning of

every sampling period, the wideband excitation algorithm generates the input command

via the following FORTRAN command, in double precison:
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ACTI=WBSTAN*(2.0*DBLE(RAN(IRAN))-I.0D0)+WBSTAN

where RAN(-) is the random number generator the output of which is a floating-point

number uniformly distributed between 0.0 and 1.0 exclusive. The seed IRAN=ISEED is

one of the experimental constants and is set at 3333 right at the beginning of the experiment

run. To play safe, the input sequence is hard-limited in the program before applying to the

structure. As a final note, there is no direct access to the actual output of the torquers, so

the commanded input sequence constitutes the only measured input data to the system.

2.3 Digital Filter Design

2.3.1 Introduction

In this section, the on-line design of digital filters is discussed. As depicted earlier

in Figure 1.1-1, digital filters are used to generate narrowband excitation processes which

focus the input energy into specific ranges of plant frequencies. In general, these narrow-

band input processes will be either of the lowpass or bandpass type, and are generated by

filtering white noise sequences by appropriately designed digital filters.

2.3.2 Background

The main developmental effort for this task involved hosting and integrating the

EQIIR computer subroutine from the IEEE Digital Signal Processing software collection

[3]. EQIIR is a very versatile general purpose routine which provides the capability for

on-line design of lowpass, highpass, bandpass, and bandstop Butterworth and Chebyshev

filters. These routines have been discussed from a practical perspective in [15].

EQIIR. designs a variety of infinite impulse response (IIR) filters using closed-form

design formulas. This is in contrast to finite impulse response (FIR) filters which generally

require an iteration process to meet given specifications since closed-form design equations

do not exist. Another advantage to using IIR filters is that specified amplitude response

specifications may be met more efficiently (with lower order filters) than with FIR filters.

This is important in our application since we are trying to effectively demarcate frequency

bands of interest to allow maximum input power for the identification process. In EQIIR,

once the user has specified cutoff frequencies and passband and stopband tolerances, the

program obtains the desired IIR filter coefficients by straightforward substitution into a

set of design equations. The filter is realized as a cascade of second-order sections.

For our purposes, only Butterworth filters will be designed using the EQIIR program.

Advantages of the Butterworth filter are that the frequency characteristic is monotonic

in both the passband and the stopband, the magnitude response is maximally flat in the

passband, and the filter itself is easily implemented. The squared magnitude function for

an analog Butterworth filter is of the form

[H.(jw)l 2 =
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wherethe designparameter N specifies the filter order and w0 is the cutoff frequency.

2.3.3 Integration with System Software

The subroutine EQIIR has been integrated into the experiment software, and filters

can be designed via the experiment menus. The filter design menu is given as follows,

MENU (4,4,9)
FILTER DESIGN PARAMETERS

0 -- Exit

231 -- PARAM(231) 3.

232- PARAM(232) 1.

233- PARAM(233) 12.

234- PARAM(234) .2

235- PARAM(235).5

236- PARAM(236) 1.

237- PARAM(237) 3.

238- PARAM(238) 3.5

239 -- PARAM(239) .02

240 -- PARAM(240) .01

241 -- PARAM(241) 2.

; ITYPE = type of filter

; IAPRO = type of approx. (l=Butterworth)

; NDEG = prescribed filter order

; EDEG = relative extension of the degree

; FR(1) = critical frequency #1 (Hz)

; FR(2) = critical frequency #2 (Hz)

; FR(3) = critical frequency #3 (Hz)

; FR(4) = critical frequency #4 (Hz)

; ADELP = tolermlce in passband

; ADELS = tolerance in stopband

; IFIL = filter coeff, storage location

Here, the variables are defined pictorially in Figure 2.3-1. It is noted that four design

frequencies are required for the design of bandpass filters, while only two are required for

lowpass filters.

As an example, the nominal values in the menu are set to design a Butterworth

bandpass filter between 1 and 3 Hz. The setting of EDEG=.2 will automatically extend

the specified filter degree of 12, as required to meet the specifications. The coefficients are

stored in a file addressed by IFIL = 2 for later use.

2.4 Narrowband Excitation

Wideband excitation yields only a general knowledge of the structural dynamics.

Equipped with such information, further investigations into certain modal dynamics within

certain frequency ranges may be desirable for more detail analysis. One of such investiga-

tions is the narrowband excitation. By concentrating the available actuation energy within

a narrow frequency range of interest, narrowband excitation can lead to an improvement

in the signal to noise ratio and hence, better identification results and understanding of

the modal dynamics. There are two parts to narrowband excitation. The first part which

is the design of a filter with a specified frequency range as passband is described earlier

in the section 2.3. The present section concerns with the passing of a zero-mean-white

sequence through the filter to generate the desired narrowband excitation input.

The narrowband excitation experiment is set up via the same menu as the wideband
excitation:
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MENU(4,4,2)

WIDEBAND EXCITATION PARAMETERS

0 - Exit

51 - PARAM(51) 0. ;WBMEAN= mean of excitation

52 - PARAM(52) 1.5 ;WBSTAN= amplitude of excitation

NARROWBAND EXCITATION PARAMETERS

71- PARAM(71) 100.0 ;PER= (narrow/wideband)*100 excit, power

72 - PARAM(72) 2.0 ;NBFIL= narrowband fltr storage location

Here, NBFIL specifies the storage location of the filter coefficients of interest. The param-

eter WBMEAN and WBSTAN determine the wideband input sequence w to be passed

into the filter to result the narrowband input Un. PER specifies the energy ratio, in %,

which is defined as the ratio of actuation energy of u,, to that of w. From [16], the power

spectrum of un is given as

Su.u. = Sww( )lH(d T)l= (2.4--1)

where T is the sampling period, and

H(eJwT ) = bo + ... + bN e-jNwT
1 + ... + aNe-jNwT

(2.4-2)

where al, as, ..., aN, b0, bl, ..., bN, are the filter coefficients. Approximating the power

spectrum Sww(w) as uniform, the energy ratio of un and w can be estimated as

_ IH(d_T)12dw (2.4 - 3)

where _ equals half the sampling frequency of the experiment. Before the start of the

excitation, the program first performs the following functions:

1. Read in the filter coefficients from the location specified by NBFIL.

2. Using eqn (2.4-3), compute the "would-be" power ratio of un and w without any

scaling of u,. The integration of eqn (2.4-3) is performed numerically.

3. Compute the constant sca that needs to be multiplied to Un so as the make the energy

ratio=PER.
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With sca computed, the program goes into the real-time mode. At every sampling

period, the wideband excitation sequence w is generated first as for the wideband case via

the random generator. The narrowband excitation command is then calculated via the

recursion equation

un(m) + alun(m- 1)+... +aNun(m-- N) -- sca. [bow(m)+...+ bNw(m-- N)] (2.4- 4)

where un(m) and w(m) are zero for mi0. As such, the narrowband excitation sequence is

generated real time and will have the correct energy ratio of PER. Real-time generation

of un is desirable here to prepare for possible accommodation of ID schemes capable of

adjusting the input excitation based on identified parameters. A hard-limit is again im-

posed on the input sequence so as not to saturate the torquers. It is well to point out

that though w is uniformly distributed, computing un through egn (2.4-4) results in a near

Gaussian distribution for un (This is sometimes called the "filter hypothesis"). If PER

is set at 100%, the standard deviations 0.2 for Un and w will be the same and equal to

(assume WBMEAN=O)

a2= WBSTAN2
3 (2.4-5)

For the nominal value of WBSTAN=I.5 nt-m, a is equal to 0.866 nt-m. Assuming un is

a Gaussian distributed sequence with this a value, most of the numbers in the sequence

would lie in a range from -3a to +3a, i.e., from -2.6 nt-m to +2.6 nt-m. This means that

the torquers will be saturated quite frequently. To alleviate the problem, the nominal value

for PER is 66.7%, which results in most of the narrowband input commands inside the

range -2 nt-m to +2 nt-m. As a result, hard-limiting the narrowband input sequence will

not greatly distort its distribution and power spectrum. Again, as for the wideband case,

the input sequence constitutes the only measured input data to the system. There is no

direct access to the actual output of the actuators.

2.5 Data Composition

Data composition is a technique to allow the inputs and outputs of several experiments

to be added together and form composite input UDC and output YDC for processing and

analysis. Such a process is useful in the following cases:

a. Narrowband excitation concentrates the actuation energy into a narrow frequency

range for more effective modal excitation. Data composition combining inputs and

outputs of several narrowband experiments, each covering different parts of the spec-

trum, yields the data of an experiment effectively covering a wide frequency range and

of large actuation power at all frequencies.

b. Several runs of the same wideband/narrowband experiment can be performed and

composed together to result in an improved signal to noise ratio for UDC and YDC.
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c. A combination of (a.) and (b.).

In short, data composition is a means to overcome the limited level of actuation power in

the system. The menu governing data composition is given as follows:

MENU(4,4,8)
DATA COMPOSITION PARAMETERS

0 - Exit

211 - PARAM(211) . ;IDC=processing type

0-initialize UDC & YDC to zero

1-add U and Y to UDC and YDC

2-swap U & UDC

3-swap Y & YDC

4-swap Y & YEST

5-swap Y & YERR

Here, U and Y denote the input u and output y of the experiment. UDC and YDC

denote the data arrays where the composed data are stored. The procedures for conducting

data composition are as given below:

1. Set PARAM(211)=IDC=0, run the DATA COMPOSITION mode of operation. This

will clear the storage arrays of UDC and YDC to zeros.

2. Conduct the first of the wideband/narrowband experiment planned.

3. Set IDC=I, run the DATA COMPOSITION mode of operation. The input u and

output y are added to the contents of the arrays UDC and YDC, respectively.

4. Repeat Step 2 and Step 3 for each of the planned experiments.

5. Set IDC=2, run the DATA COMPOSITION mode of operation. The array UDC will

change position with the array u.

6. Set IDC=3, run the DATA COMPOSITION mode of operation. The array YDC will

change position with the array y.

7. The arrays u and y, now containing the composed data are ready to be analyzed,

processed, and plotted.

The options of IDC=4 and IDC=5 are concerned with the OUTPUT ERROR ANAL-

YSIS. They will be discussed in Sect. 2.10.
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2.6 Sine-Dwell

2.6.1 Introduction

The sine-dwell method is a standard technique for frequency domain identification of a

transfer function. The idea is to input sinusoids at a variety of frequencies, and to measure

the phase and amplitude of the steady-state response to each input. This characterizes

the phase and amplitude of the transfer function at the sine-dwell frequencies, hence pro-

viding nonparametric identification (e.g., a Bode plot) of the plant. The phase/amplitude

response can then be curve fit to determine parametric representations of the plant.

Motivated by the on-orbit LSS application, we will assume that

1) the sine-dwell inputs are computer generated in discrete time using a zero-order-hold

(i.e., piecewise constant over equal sampling instants)

2) The plant contains low frequency modes (under .1 Hz)

3) The noise is additive and uncorrelated with the sine-dwell input and its quadrature

component.

These assumptions will drive the discretization and estimator design.

2.6.2 Background

There are many different methods for discretizing a continuous time plant. We will

take a moment to be clear about the discretization technique being used here.

Suppose the continuous time plant is represented by the following convolution integral.

_0 °°
y(t) = g(r)u(t- r)dr (2.6-

The continuous time transfer function G(s) is defined as the Laplace transform of the

impulse response g(t) i.e.,

G(s) = g(t) e-'tdt (2.6- 2)

Assume that the input is kept constant between sampling instants i.e.,

u(t) = uk, kT <_ t < (k + l)T (2.6-3)

Then it can be shown that the following discrete-time convolution relation holds exactly,

k

Yk = E gt uk-t (2.6 - 4)
t=0

where,

Yk = y(kT) (2.6 - 5)
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kT

f( g(r)dr (2.6-6)gt = k-1)T

A discrete time transfer function h(z) is defined as the Z transform of the sequence {gt},

p(z) = _9_ z -_ (2.6- 7)
k+0

The h(z) and C(s) can be shown to be related by

p(z) = (1- z-1) z[a(_)/_] (2.6- s)

where the Z[.] operator provides an impulse invariant discretization of its argument (i.e.,

the Z transform of the sampled inverse Laplace Transform).

Computer generated sine-dwell input signals are in the form of the following digitized

sinusoid,

uk = Y sin(wkT) (2.6 - 9)

The system response at steady state is given by the relation

Yk = YIP(d_°TI sin (wkT + argp(eJ_°T)) (2.6-1o)

As noted from (2.6-10), the usefulness of the sine-dwell method follows from the fact

that the amplitude and phase of the discretized transfer function p(e j_T) at the sine-dwell

frequency w can be determined by the amplitude and phase, respectively, of the sine-dwell

response.

2.6.3 Sine-Dwell Estimator Design

It is desired to estimate the gain and phase of the sinusoidal steady-state response. In

order to avoid a nonlinear estimation problem, this is transformed into a linear problem

by noticing that,

Yk = YlP(eJ_°Tlsin (wkT + argp(ej"_T))
(2.6- 11)

= acos(wkT)+ b sin(_kT)

where

YIp(d_T)l = x/_a_+ b2

argp(ejwT)-=tan-l(bla)

(2.6-12)

(2.6-13)

The quantities a and b are estimated in place of the amplitude and phase of the plant.

Here, a and b are related to the real and imaginary parts of the transfer function by,

a/Y = Re p(e j_T) = GREAL (2.6 - 14a)

b/Y = Im p(e jwT) = GIMAG (2.6 - 14b)
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The notations GREAL and GIMAG are used as Fortran names for the

quantities, and will become useful in later discussion. Equation (2.6-11) can be

as,

yk = 0T Ck

O = [a, b]T

Ck = [sin(wkT), cos(wkT)] T

The estimation of a and b from y and ¢ is "linear in the parameters" and is

using a least squares algorithm with exponentially fading memory,

indicated

rewritten

(2.6-15)

(2.6- 16)

(2.6- 17)

performed

N

_N= argon_ _N-"IY,_- eT_l2
k----0

(2.6-IS)

where 0 < A < 1. The least squares algorithm is implemented recursively according to the

well known formulas [26],

1

pk = -_[ph- Pk4'kCrkPk/(A+ ¢_rP_¢k)] (2.6- 19)

8o = [0, 0]T

Po = I_

(2.6- 20)

(2.6- 21)

(2.6- 22)

The exponential fading memory window is used (instead of a growing rectangular

memory window) since a and b will be time varying quantities until the system reaches

steady state. The estimation is performed recursively to monitor the behavior of the

estimate and to watch them "settle out" into their steady-state values.

The subroutine GRIME in Fig. 2.6-1 estimates a and b using recursive least squares

routine with exponential forgetting. A UDU factorized form of the estimation equations

is used to assure robustness of the estimator, and follows closely the routine outlined in

Thorton and Bierman [17]. The time constant of the exponential window is specified by a

quantity TGRIM from. which the value of A is determined as follows,

)k -- e -T/TGRIM (2.6-23)

It is noted that A in the above equations corresponds to RL in the Fortran code. In general,

the size of TGRIM should be chosen as a few cycles at the sine-dwell frequency and larger

if possible to assure good noise rejection. The latter choice will be explained in more detail

below.
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C FILE: GRIME.FOR

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

SUBROUTINE GRIME(Y,YP,FREQ,TIME,THETA,P,RL,RES,GREAL,GIMAG)

FITS A AND B TO MODEL Yp=A*COS(W*TIME)+B*SIN(W*TIME)

WHERE A=THETA(1), B=THETA(2), W=2*PI*FREQ
IF INPUT TO PLANT G(S) IS Y,SIN(W,TIME) THEN

B/Y=GREAL (I.E.,REAL PART OF G(jW)

A/Y=GIMAG (I.E.,IMAG PART OF G(JW))
FITTING OF A&B IS DONE WITH A GENERAL ROUTINE FOR

RECURSIVE LEAST SQUARES ALGORITHM WITH UDU FACTORIZATION

THIS ROUTINE IMPLEMENTS:

P=I/RL{P-P*PHI*PHI*P/(RL+PHI*P*PHI))

RES=YP-PHI_THETA

THETA=THETA+(P*PHI/(RL+PHI*P*PHI)}*RES

THIS ROUTINE CLOSELY FOLLOWS THORTON & BIERMAN

CONTROL & DYNAMIC SYSTEMS,VOL 16,1980,PG.241

Y - (1) AMPLITUDE OF PLANT INPUT SINE I.E, Y_SIN(W*TIME)

YP - (1) PLANT OUTPUT (SINE-DWELL RESPONSE)

NN - TOTAL # OF PARAMETERS

THETA - (I/0) 2VECTOR OF PARAMETER_

P - (I/O) 2X2 COVARIANCE MATRI;_, (D ON DIAG & NONTRIV ON OFFDIAG)

PHI - 2VECTOR REGRESSOR

YP - PLANT OUTPUT

FREQ - (1) SINE DWELL FREQUENCY

TIME - (1) EXPERIMENT TIME ELAPSED I.E. YP(TIME)

GREAL - (0) REAL PART OF G(OW)

GIMAG - (0) IMAG PART OF G(JW)

RL-WEIGHTING FACTOR FOR EXP WINDOW RL=EXP(-T/TGRIM)

RES-RESIDUAL YP-PHI*THETA

C-UPPER CLAMP ON ENTRIES OF D IN UDU

REAL*4 THETA(2),P(2,2),PHI(2),F(2),G(2),

1 Y,RES,ALPHA,DD,GAMMA,BETA,AL,S,C,RL

PARAMETER (NN=2,C=I.E36,TWOPI=6.28318530717959)

LOGICAL*I FLAG

CALL OVEFL(FLAG)

W=TWOPI*FREQ

PHASE=W,TIME

PHI(1)=COS(PHASE)

PHI(2)=SIN(PHASE)

RES=YP

DO I0 J=I,NN

I0 RES=RES-PHI(J)*THETA(O)

DO 30 I=2,NN

J=NN+2-1

ALPHA=PHI(J)

Jl=O-i

DO 20 KK=I,JI

Fig. 2.6-1 GRIME Subroutine for Sine-Dwell Estimation.
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C

C

C

C

20 ALPHA=ALPHA+P(KK,J)_PHI(KK)

F(J)=ALPHA

30 G(J)=P(JgJ)$ALPHA

G(1)=P(1,1)_PHI(1)
F(1)=PHI(1)

4O

50

60

ALPHA=RL+F(1)_G(1)

GAMMA=O.

IF(ALPHA.GT.O.)

IF(G(1).NE.O.)

DO 50 J=2,NN
BETA=ALPHA

DD=G(J)

ALPHA=ALPHA+DD_F(J)

IF(ALPHA.EQ.O.O) GO

AL=-F(J)$GAMMA

GAMMA=I./ALPHA

P(I,1)=GAMMA_P(I,I)

TO 50

Jl=J-1

DO 40 I=1,J1

S=P(I,J)

P(I,J)=S+AL*G(I)

G(I)=G(I)+DD:S

GAMMA=I.0/ALPHA

P(J,J)=BETA:GAMMAIP(J,J)/RL

P(J,J)=DMINI(P(J,J),C)
CONTINUE

AT THIS POINT ALPHA=RL+PHI_PSPHI

DO 60 I=I,NN

THETA(I)=THETA(1)+G(1)_RES/ALPHA

GREAL=THETA(2)/Y

GIMAG=THETA(1)/Y

RETURN

END

; THE INNOVATIONS COV

Fig. 2.6-1 GRIME Subroutine for Sine-Dwell Estimation (continued).
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2.6.4 Noise Rejection Properties of Estimator

The noise rejection properties of the estimator are briefly analyzed. Assume that there

is noise in equation (2.6-15) giving rise to the modified form,

Yk = 0TCk "]- Vk (2.6-24)

where Vk represents an additive noise disturbance. In practice this can correspond to input

noise, environment disturbances, and/or measurement error. The estimate at time N can

be written as [27],

1=e + ¢ E (2.6- 25)
k=l k=l

From this expression we can deduce the following properties of the estimator,

1) If the noise vk is uncorrelated with the regressor Ck (i.e., the input and its quadrature

component), the estimate of 8 is unbiased, and the noise rejection properties of the

estimator can be improved by "opening up" the filter window i.e., by increasing _, or

increasing TGRIM.

2) If the noise Vk is correlated with the regressor Ck, the bias is proportional to the degree
of correlation.

3) The estimation problem is well posed since the quantity in the brackets of (2.6-25)

is always invertible for )_ sufficiently large (e.g., let TGRIM equal to several cycles of

the sine-dwell frequency).

2.6.5 Sine-Dwell Example

The performance of the estimator encoded in the GRIME subroutine is tested by

simulation. For this purpose, the top level program SDWELL.FOR in Fig. 2.6-2 was

written to perform the following operations

1) generate a sinusoidal input (call subroutine SINWT)

2) apply input to plant dynamics (call subroutine MODEL)

3) calculate GREAL and GIMAG recursively (call subroutine GRIME)

The top level program SDWELL.FOR calls the subroutines SINWT, MODEL, and

GRIME which are depicted in Figures 2.6-3, 2.6-4 and 2.6-1, respectively.

Simulation was performed using the following parameters,

Sampling Period T=.03

Sine-Dwell Amplitude Y = 1.

Sine-Dwell Frequency FREQ = 0.06027 Hz

Forgetting time constant TGRIM -- 20 Sec

The plant model for the simulation study had a single mode with 5% damping with

natural resonance exactly at the sine-dwell frequency 0.06027 Hz.
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

FILE: SDWELL.FOR

THIS IS TOP LEVEL PROGRAM FOR SINE-DWELL STRUCTURAL TESTING.

THIS PROGRAM APPLIES A SINUSOID TO A PLANT MODEL, GENERATES THE

RESPONSE, AND THEN CALCULATES THE REAL PART (GREAL) AND

IMAGINARY PART (GIMAG) OF THE TRANSFER FUNCTION AT THE SINE-DWELL

FREQUENCY. GREAL AND GIMAG ARE ESTIMATED IN TIME, AND SHOULD SETTLE

OUT TO CONSTANT VALUES WITH A LONG ENOUGH EXPERIMENT RUN.

REAL*4 XI(4),X2(4),GTHETA(2),GP(2,2)

INITIALIZE EXPERIMENT RUN

PARAMETER (T=.03, TMAX=&O0.)

T-SAMPLING PERIOD

TMAX-TOTAL EXPERIMENT RUN TIME

INITIALIZE INPUT DESIGN

PARAMETER (Y=I., FREQ=.06027)

Y-SINEDWELL AMPLITUDE

FREQ-SINEDWELL FREQUENCY (HERTZ)

INITIALIZE PLANT MODEL

PARAMETER (NM=I)

DATA XIIO.,O.,O.,O./, X210.,O.,O.,O./
NM-NUMBER OF MODES IN PLANT MODEL

XI,X2-1NITIAL PLANT STATE

INITIALIZE GRIME ROUTINE

DATA GTHETA/O.,O./,TGRIM/20./

DATA GP(I,I)/I.EIO/,GP(I,2)/O./,GP(2,1)/O./,GP(2,2)/I.EIO/
GTHETA-GRIME ESTIMATOR STATE

GP-GRIME ESTIMATOR COVARIANCE

TGRIM-GRIME ESTIMATOR TIME CONSTANT

OPEN(7,FILE='SDWELL.M',STATUS='OLD" )

NMAX=INT(TMAX/T)

RL=EXP(-TITGRIM)

DO I0 NRUN=I,NMAX

TRUN=NRUN*T

CALL SINWT(Y,T,NRUN,FREQ,YSIN,YCOS)

CALL MODEL(T,NM,XI,X2,YSIN,YP)

CALL GRIME(Y,YP,FREQ,TRUN,GTHETA,GP,RL,RES,GREAL,GIMAG)

OUTPUT TO FILE EVERY 10 SECONDS

IF (MOD(NRUN,IOO).NE.O) GO TO 30

WRITE(7,20) TRUN, YSIN, YP, GREAL, GIMAG
30 CONTINUE

10 CONTINUE

20 FORMAT(IX,5(EIO.4,2X))
STOP

END

Fig. 2.6-2 Top Level Program for Sine-Dwell Testing Simulation.
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C

C

C

C

C

C

C

C

C

C

C

FILE: SINWT.FOR

SUBROUTINE SINWT(Y,T,N,FREQ,YSIN,YCOS)

THIS SUBROUTINE IMPLEMENTS A SINUSOID

Y - (1) AMPLITUDE OF SINUSOID

T - (I) SAMPLING PERIOD

N - (1) PRESENT TIME SAMPLE NUMBER (TIME=N_T)

FREQ - (I) FREQUENCY OF SINUSOID

YSIN - (0)" Y_SIN(2_PI_FREQIN_T)

YCOS - (0) Y_COS(2_PI_FREQ*N_T)

TWOPI=6.28318530717959

TIME=TWOPI_FREQ_N_T

YSIN=Y_SIN(TIME)

YCOS=Y_COS(TIME)

RETURN

END

Fig. 2.6-3 Subroutine for Generating Sinusoidal Input.
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

FILE: ODEL.FOR

SUBROUTINE MODEL(T,N,X1,X2,U,Y)

REAL_4 B(16),C(16),FREQ(16),XI($),X2(_)

LOGICAL_4 IFLAG

DEFINITIONS:

N=NUMBER OF MODES

XI=NVECTOR OF MODAL AMPLITUDES

X2=NVECTOR OF MODAL VELOCITIES

U=SCALAR INPUT

Y=SCALAR OUTPUT

B=NVECTOR,INPUT INFLUENCE COEFF.

C=NVECTOR,OUTPUT INFLUENCE COEFF.

ZETA=SCALAR % MODAL DAMPING

SISO HUB TO FEED TRANSFER FUNCTION

ASSUMES NO BOOM MASS

SAMPLE&HOLD INPUT

IDEAL SAMPLED OUTPUT

DATA B/.0982,.I064,.252,.455,1.,I.,I.,I.,I.,I.,I.,

I I.,I.,1.,I.,I./

DATA C/-.824,-10.189,4.665,3.420,I.,I.,I.,I.,I.,I.,

1 i.,I.,i.,I.,I.,i./

DATA FREQ/.O6027,.550,.7308,2.&57,2.8,3.,3.2,3.5,3.7,

i 3.9,4.,4.2,4.4,4.6,4.8,5./

DATA ZETA/.O5/,TWOPI/6.28318530717959/,IFLAG/.TRUE./

10

CALL UNDERO (IFLAG)

Y=O.

DO I0 I=I,N

WI=TWOPI_FREQ(1)

R=EXP(-ZETA_WI_T)

S=SQRT(i.-ZETA_2.)

THETA= ACOS(S)

WN= WI_S

CS= COS(WN_T)

SN=SIN(WN_T)

ZI= (R/S)_(COS(WN_T-THETA)_XI(1)+SN_X2(1)/WI)

Z2=(R/S)_(COS(WN_T+THETA)_X2(1)-WI_SN_XI(1))

D=ZETA/S

E=B(I)/WI_2.

ZI=ZI+E_(I.-R_(CS+D_SN))_U

X2(1)=Z2+E_R_WI_SN_U/S

XI(1)=Z1

Y=C(1)IZI+Y

CONTINUE

RETURN

END

Fig. 2.6-4 Subroutine to Simulate Model Dynamics.
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The results of a 600 second simulation experiment are shown in Fig. 2.6-5. The plant

input and output are plotted in Fig. 2.6-5a and GREAL and GIMAG are plotted as a

function of time in Fig. 2.6-5b. It is seen that the steady state is achieved approximately

after 150 secs, while the estimates of GREAL and GIMAG take somewhat longer to settle

out. The convergence properties of the algorithm are further seen in Fig. 2.6-5c which

shows a "zig-zag" trajectory in the GREAL-GIMAG plane. The final phase is given by,

tan -1 (GIMAG/GREAL) = 90.56 °

2.6.6 Resonance Tuning

A useful feature of sine-dwell testing is the ability to refine modal frequency estimates

by tuning the sine-dwell frequency to achieve some specified resonance condition. Assuming

a single lightly damped mode, the condition for resonance is precisely +/- 90 phase shift

and/or a peak amplitude in the response. This condition must be modified for multiple

modes and nonzero damping effects. The amplitude condition will generally be more robust

to these effects than the phase condition.

The testing of the amplitude criteria for resonance requires a unimodM search. Search

strategies such as golden search, Fibonacci search etc. are well known and can be found for

example in [2]. The testing of the phase condition for resonance requires a zero-crossing

search. The binary search routine is one of the most popular for this purpose. The phase

condition will be used in the present implementation.

The Fortran subroutine BS in Fig. 2.6-6 was devised to implement a binary search

for resonance frequencies based on the phase condition. The phase condition was modified

slightly to become,

GREAL/GIMAG = 0

since this condition is easily tested and is met for either the +90 or -90 degree resonance

conditions.

In order to test the BS routine, the top level program BSTST.FOR in Fig. 2.6-7 was

designed, and the previous top level program SDWELL.FOR was turned into a subroutine

SDWELLS in Fig. 2.6-8. The test program BSTST.FOR performs the following operation,

1) Initialize search by determining GIMAG/GREAL at frequencies FMIN, FMAX, FMID

(call SDWELLS three separate times to find RATMIN, RATMAX, RATMID, respec-

tively).

2) Update FMID by performing bisection (call BS).

3) Calculate GIMAG/GREAL at frequency FMID (call SDWELLS to find RATMID).

4) Go to (2) until satisfied with result.

2.6.7 Resonance Tuning Example

A simulation experiment is run using a plant having 4 modes at the following frequen-

cies, 0.06027, .550, .7308, 2.657 Hz. Modal damping is assumed at 5%.
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Fig. 2.6-5 Sine-Dwell Simulation: (a) Plant Input and Output, (b) Outputs of GRIME

Estimator, and (c) Convergence of GRIME Estimator in Complex Plane.
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C
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C

C
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C

C

C

C

C

C

FILE: BS.FOR

SUBROUTINE BS(FMIN,RATMIN,FMAX,RATMAX,FMID,RATMID,FNEW)

THIS SUBROUTINE PERFORMS ONE ITERATION OF A BINARY

SEARCH TO FIND THE ZERO CROSSING OF REAL/IMAG OF G(j_2PI*F).

AT EACH ITERATION THE ROUTINE ASSUMES THAT THE ZERO

CROSSING IS ON THE INTERVAL (FMIN,FMAX) AND THAT THE VALUE

OF REAL/IMAG IS SPECIFIED FOR FMIN,FMAX, AND AT SOME

INTERMEDIATE POINT FMID. THE ROUTINE RETURNS A NEW FREQUENCY

FNEW TO TRY NEXT, AND SHRINKS THE INTERVAL (FMIN,FMAX)
BY REDEFINING THE ENDPOINTS ACCORDINGLY. THE SET-UP FOR

THE NEXT CALL IS FMID=FNEW, AND MUST BE DONE EXTERNALLY BY THE

CALLING ROUTINE, ALONG WITH THE CALCULATION OF RATMID.

FMIN-(I/O) LOWER END OF FREQUENCY INTERVAL (HERTZ)

FMAX-(I/O) UPPER END OF FREQUENCY INTERVAL (HERTZ)

FMID-(I/O) INTERMEDIATE POINT OF (FMIN,FMAX)

FNEW-(O) NEW FREQUENCY TO TEST NEXT

RATMIN=(I/O) REAL/IMAG OF G(jW) AT W=2PI_FMIN

RATMAX=(I/O) REAL/IMAG OF G jW) AT W=2PI_FMAX

RATMID=(I/O) REAL/IMAG OF G jW) AT W=2PI_FMID

ISMIN=INT(RATMIN/ABS(RATMIN

ISMAX=INT(RATMAX/ABS(RATMAX

ISMID=INT(RATMID/ABS(RATMID

IF(ISMID.NE.ISMAX) GO TO i0

FMAX=FMID

RATMAX=RATMID

FNEW=(FMID+FMIN)/2.

10 IF(ISMID.NE.ISMIN) GO TO 20

FMIN=FMID

RATMIN=RATMID

FNEW=(FMAX+FMID)/2.

20 CONTINUE

RETURN

END

Fig. 2.6-6 BS Subroutine for Single Iteration of Binary Search for Resonance.
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C

C

10

FILE BSTST:FOR

THIS FILE TESTS THE BINARY SEARCH SUBROUTINE BS

FMIN=.04

CALL SDWELLS(FMIN,GREAL,GIMAG)

RATMIN=GREAL/GIMAG

PRINT *,'FMIN=',FMIN,'RATMIN=',RATMIN

FMAX=.08

CALL SDWELLS(FMAX,GREAL,GIMAG)
RATMAX=GREAL/GIMAG

PRINT *,'FMAX=',FMAX,'RATMAX=',RATMAX
FMID=(FMIN+FMAX)/2.

CALL SDWELLS(FMID,GREAL,GIMAG)

RATMID=GREAL/GIMAG

DO 10 I=1,10

THETA=3bO.*ATAN2(GIMAG,GREAL)/(2._3.14)

PRINT *,'FMID=',FMID,'RATMID=',RATMID,'THETA=',THETA

CALL BS(FMIN,RATMIN,FMAX,RATMAX,FMID,RATMID,FNEW)

FMID=FNEW

CALL SDWELLS(FMID,GREAL,GIMAG)
RATMID=GREAL/GIMAG

CONTINUE

END

Fig. 2.6-7 Top Level Routine for Resonance Tuning Simulated Testing.
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C

FILE: SDWELLS.FOR

THIS IS A SUBROUTINE FOR SINE-DWELL STRUCTURAL TESTING.

THIS SUBROUTINE APPLIES A SINUSOID TO A PLANT MODEL, GENERATES THE

RESPONSE, AND THEN CALCULATES THE REAL PART (GREAL) AND
IMAGINARY PART (GIMAG) OF THE TRANSFER FUNCTION AT THE SINE-DWELL

FREQUENCY. GREAL AND GIMAG ARE ESTIMATED IN TIME, AND SHOULD SETTLE

OUT TO CONSTANT VALUES WITH A LONG ENOUGH EXPERIMENT RUN.

SUBROUTINE SDWELLS(FREQ,GREAL,GIMAG)

REAL*4 XI(4),X2(4),GTHETA(2),GP(2,2)

INITIALIZE. EXPERIMENT RUN

PARAMETER (T=.03, TMAX=600.)

T-SAMPLING PERIOD

TMAX-TOTAL EXPERIMENT RUN TIME

INITIALIZE INPUT DESIGN

PARAMETER (Y=I.)

Y-SINEDWELL AMPLITUDE

FREQ-SINEDWELL FREQUENCY (HERTZ)

INITIALIZE PLANT MODEL

PARAMETER (NM=4)

NM-NUMBER OF MODES IN PLANT MODEL

XI,X2-INITIAL PLANT STATE

INITIALIZE GRIME ROUTINE

DATA GTHETA/O.,O./,TGRIM/20./

DATA GP(I,I)/I.EIO/,GP(I,2)/O./,GP(2,1)/O./,GP(2,2)/I.EIO/

GTHETA-GRIME ESTIMATOR STATE

GP-GRIME ESTIMATOR COVARIANCE

TGRIM-GRIME ESTIMATOR TIME CONSTANT

DO 50 J=l,4

XI(O)=O.

X2(O)=O.

50 CONTINUE

NMAX=INT(TMAX/T)

RL=EXP(-T/TGRIM)

DO I0 NRUN=I,NMAX

TRUN=NRUN*T

CALL SINWT(Y,T,NRUN,FREQ,YSIN,YCOS)

CALL MODEL(T,NM,XI,X2,YSIN,YP)

CALL GRIME(Y,YP,FREQ,TRUN,GTHETA,GP,RL,RES,GREAL,GIMAG)

i0 CONTINUE

20 FORMAT(IX,5(EIO.4,2X))

RETURN

END

Fig. 2.6-8 Sine-Dwell Testing Subroutine for use with Resonance Tuning Simulation.
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Assumefor the moment that it is known that the low frequency resonance lies between

.04 and .08 Hz and it is desired to find it more accurately via sine-dwell experiments. The

resonance tuning simulation is run with the following parameters

FMIN=.4

FMAX=.8

TMAX=600

TGRIM=20

The results are given below

FMIN= 0.400000E-01 RATMIN=

FMAX= 0.800000E-01 RATMAX=

FMID= 0.600000E-01 RATMID=

FMID- 0.700000E-01 RATMID=

FMID= 0.650000E-01 RATMID--

FMID= 0.625000E-01 RATMID=

FMID= 0.612500E-01 RATMID--

FMID-- 0.606250E-01 RATMID=

FMID= 0.603125E-01 RATMID=

FMID= 0.601562E-01 RATMID=

FMID= 0.602344E-01 RATMID=

FMID= 0.602734E-01 RATMID=

-8.95374

5.23976

-0.100850 THETA= 95.8074

2.87578 THETA= 19.1839

1.47348 THETA-- 34.1806

0.709344 THETA= 54.6780

0.310266 THETA= 72.7996

0.106211 THETA= 83.9798

0.306516E-02 THETA= 89.8699

-0.487951E-01 THETA= 92.8406

-0.228411E-01 THETA= 91.3548

-0.988245E-02 THETA-- 90.6121

Since spiUover effects are small for this mode, the true resonance is determined accu-

rately after 10 iterations.

Assume that the second frequency is known to lie between .44 and .6 Hz. The reso-

nance tuning experiment is run with the following parameters,

FMIN=.44

FMAX=.6

TMAX=100

TGRIM=20

The

FMIN =

FMAX--

FMID--

FMID=

FMID-

FMID =

FMID =

FMID-

FMID=

FMID=

FMID=

FMID=

results are

0.440000

0.600000

0.520000

O.560O0O

O.540O0O

0.550000

0.545000

0.547500

0.546250

0.546875

0.547187

0.547344

summarized as,

RATMIN=

RATMAX=

RATMID =

RATMID=

RATMID =

RATMID =

RATMID =

RATMID =

RATMID =

RATMID =

RATMID=

RATMID =

-3.50633

2.65671

-0937059

0.485611

-0.256629

0.100512

THETA=

THETA=

THETA=

THETA=

-0.806356E-01 THETA--

0.920637E-02 THETA-

-0.358859E-01 THETA=

-0.133831E-01 THETA=

-0.180379E-02 THETA--

0.399663E-02 THETA=

133.206

64.1308

104.446

84.3031

94.6781

89.5179

92.1019

90.8128

90.1490

89.8164
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Convergenceto .547Hz is obtained after 10 iterations. The value differs from its true
value of .55 Hz due to the effectsof spillover on the phaseresonancecriteria.

Assumethat the third frequency is know to lie between .7 and .8 Hz. The resonance
tuning experiment is run with the following parameters,

FMIN=.7
FMAX--.8
TMAX=100
TGRIM=20

The results are summarizedas follows,

FMIN= 0.700000 RATMIN-- -1.65786
FMAX-- 0.800000 RATMAX-- 0.954088
FMID= 0.750000 RATMID-- 0.190979 THETA= -100.863
FMID= 0.725000 RATMID-- -0.489801 THETA-- -63.9367
FMID= 0.737500 RATMID-- 0.117818 THETA= -83.3228
FMID= 0.743750 RATMID= 0.435983E-01THETA= -92.5433
FMID= 0.740625 RATMID= -0.327591E-01THETA-- -88.1684
FMID= 0.742188 RATMID= 0.599738E-02THETA= -90.3894
FMiD= 0.741406 RATMID= -0.132425E-01THETA= -89.2866
FMID= 0.741797 RATMID- -0.358763E-02THETA= -89.8400
FMID= 0.741992 RATMID-- 0.134587E-02THETA= -90.1229
FMID= 0.741894 RATMID= -0.105319E-02THETA= -89.9853

A resonanceat .74 Hz is determined after 10 iterations. The value differs from its
true value of .7308due to the effectsof spillover on the phaseresonancecriteria. Also note
that the algorithm locks on to a -90 degreephaseimplying a positive influence coefficient
for this mode.

2.6.8 Integration with System Software

As described earlier, subroutines GRIME and BS were developed, tested and improved

off-line in a completely self-contained Fortran environment on an IBM PC-AT clone. After

the subroutines were fully tested, they were transported to the experiment MicroVAX and

integrated with the experimental software.

In the experiment software, the sine-dwell test is set up via the following menu,

MENU (4,4,3)
SINE-DWELL PARAMETERS

0 - Exit

61 - PARAM(61) 1.

62- PARAM(62) 2.

63- PARAM(63) 20.

68- PARAM(68) 1.

69- PARAM(69)

SAMP=sine-dwell amplitude

SDFREQ=sine-dwell frequency (Hz)

TGRIM= GRIME estimator time constant (sec)

SDIO= I/O flow parameter

1-FMIN 2-FMAX 3=FMID 4-Res. Tuning

ISDFIL= storage file
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As an example, the nominal values in MENU(4,4,3) are set to perform a sine-dwell

experiment at a 2Hz frequency with input amplitude 1, using a 20 second exponential

forgetting factor for the GRIME estimator.

The SDIO parameter controls the mode of operation for setting up the resonance

tuning operations. In particular, the resonance tuning task is initialized by perform-

ing 3 successive sine-dwell experiments where the SDIO parameter is advanced from

SDIO=I to SDIO=2 to SDIO=3. This sets up the binary search routine with values

of GIMAG/GREAL for FMIN, FMAX and FMID, respectively. The resonance tuning

search can then be invoked on the very next pass by setting SDIO=4.

2.6.9 Remarks

The most direct method to determine amplitude and phase in the sine-dwell applica-

tion is by correlation i.e., multiply the input and output together and lowpass filter the

result. The solution presented here based on recursive least squares was arrived at after

correlation methods were tried and gave poor results. The major difficulties were due to

the sampled data approximation and the need for extremely high-order LP filters when

determining low frequency sine-dwell estimates.

Resonance tuning is generally very time consuming. For example, determining the

.06027 Hz resonance required 10 sine-dwell experiments at 10 minutes each for a total of

100 minutes. Furthermore, additional time is required to allow the structure to come to

rest between experiments. This results in a process which is quite time consuming for on-

orbit implementation. A better on-orbit approach would be to adjust the input frequency

on-line to achieve a resonance condition. Such "plant in the loop" phase-lock techniques

do not presently exist in the literature, and appear to be an important area for future
research.

Generally speaking, the phase resonance condition is only valid when the modes are

widely separated and the damping is small. When this is not the case, the amplitude

resonance condition would provide a more robust criteria. This also remains as an area for

future investigation.
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2.7 Model Order Determination

In this section, a methodology is presented for the determination of order of a linear

model representing the input/output transfer function. The algorithm is based on the

concept of product moment matrix (PMM) and" is presented both in deterministic and

stochastic forms. Alternate and modified forms of the algorithm will be used depending

on the quality and nature of the noise which is present in the data. The PMM test is

applied to simulated data obtained from system models of different orders, as well as the

actual data obtained from various identification experiments.

2.7.1 Introduction

The mathematical modeling of large flexible space systems has been a challenging task

for several decades. The models for such systems should predict the behavior of the actual

system under restricted experimental conditions. Furthermore, when correlated and tested

against the actual data, they should explain the observed behavior of the system through

post-mission data analysis. In practice, the identification problem is often separated into

two parts: a) determination of the order for a linear model and b) estimation of the pa-

rameter values of the resulting model. Clearly, in a linear system the model structure is

determined by the choice of the order. Hence, an incorrect structural assumption may

manifest itself in biased parameter estimates or may even lead to erroneous conclusions on

the results of the identification process (e.g., a large model order leads to over parameter-

izations and identifiability problems; whereas a small order may result in a large bias in

parameter estimates). This is of particular interest when model parameters have physical

significance and the accuracy of the parameter estimate is the primary objective of the

system identification experiment. Different techniques for model order determination have

been discussed [19]. Here, the product moment matrix approach is chosen for a variety

of reasons and in each case it proves advantageous over alternate methods. For example,

the PMM requires no a priori assumption on the model parameterization and form and it

requires no knowledge of density or distribution functions of unknown parameters or data.

This technique is applicable to both deterministic and stochastic systems. Finally, the

PMM algorithm is robust with respect to uncertainties and it produces meaningful results

even in the presence of significant additive measurement noise [20] [23].

The PMM is used for model order determination for a linear time-invariant dynamic

model of the facility. Narrow-band and wide-band input signals are applied to the system

in the form of hub torquers. The system response is observed by means of hub and levitator

sensors for various identification experiments. The PMM test, both in deterministic and

stochastic forms, are also applied to the simulated data obtained from the state space

models of the system with different orders. The simulation and the real data case studies

are then compared. A brief discussion of the PMM algorithm follows.
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2.7.2 The Product Moment Matrix

The idea behind the PMM approach is to analyze the correlation function of the input-

output variables for a linear model of changing structure. This will subsequently lead to a

pronounced dynamic behavior around the "¢rue" order of the system. This behavior may

be observed through the determinant or eigenvalues of a matrix with elements constructed

as follows.

Let {xk} and {yk} be a set of observations of input and output respectively (data)

which are contaminated by measurement noise. Let us also assume that the input signal

is sufficiently rich such that it persistently excites all system modes of interest. A linear

system of order n has a system function which is given by

letting

and

Y(z) ELle2,-lz-'
H(z) = _ = 1- _]_=102,z-'

or(n) = [o_,... ,e2,]

AT(k, n) = [zk-_, Yk-1, x_-2, Yk-2,..., xk-,, Yk-,]

Then in time-domain, the measured system response is given by

yk = 0r(n) A(k,-)

For N measurements, the "generalized Hankel matrix" H(N) is as follows.

(2.7-1)

(2.7-2)

(2.7-3)

(2.7-4)

I Yo Yl

H(N) = Yl. Y2

YN-I YN

.°°

_/N-I

Y2N-2

=Yi+j-2 i,j > 0 (2.7 - 5)

Similarly, the generalized Hankel matrix for the N x N block matrices formed out of the

shifted sequence Yk+e will be

H(N) = [Yi+j+e-2]

If a finite-dimensional realization for the system exists, denoting n* as the rank of its

minimal realization, then [21]

n* = Rank H(N) (2.7 - 6)

Since n* is the dimension of a minimal realization of the system which is unknown, it

will subsequently be referred to as the "true" order of the system. Note also that the

ordering of components in the vectors A(k, n) and 8(n) is such that for a higher-order

model, additional components are simply added to the end of these vectors. The product

moment matrix of the system is defined by:

N

Q[n,N]-Q. A 1-- "_ Z A(k,n) AT (k,n)
k=l
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N

Ek=l 4-1

N
I Ek=l Yk--lXk--1

=_

N
Ek=l Y k-nxk-1

N
Ek=l Xk--lYk--I

N
Ek=l y2--1

N
Ek=l Yk--nYk--1

N

"'" _k=lN Xk-lYk-n)

"'" Ek=l Yk-lYk-n

N
Ek=l 2• " " Yk--n

(2.7-7)

where n is an assumed order for the system and N is the number of data points. If the

data is noise free and n* is the "true" order of the system, then Q,* will become singular

for all n > n* [21], and

{ }Rank[Q,,] = = n+n*2n for n (2.7-8)

Hence, Q,* has the following properties:

{ }det[Q,*]= =¢ 00 for n (2.7-9)

For an arbitrary value of N and an assumed value of. the ratio

det[Qn]

D.- det[Q.+l]
(2.7- i0)

is calculated for succeeding model orders n+ 1,..., n*,..., nmax. If the value of D,* exhibits

a distinct increase compared to D,*-I, then n corresponds approximately to n*. In the

presence of noise however, the Det[Q,*] is usually non-zero for n > n*. Assuming that

the additive noise to the input and output is Gaussian and white, and the noise to signal

ratio is larger than 5%, for a system with order greater than 5, then the modified product

moment matrix _),* given by

Q,,=Q,-a2R (2.7- 11)

is used in place of (2.7-7) where a2R is the estimated covariance matrix of the measurement

noise•

A ratio test of

JOn- det[6n] (2.7- 12)
det

has proved its effectiveness for noise-to-signal ratio of up to 30% [20]. A further improve-

ment may still be obtained using the ratio

Dn- det[/5,*] (2.7- 13)
det[_)n]

where/5, is the lower (2n + 1) x (2n + 1) corner of Q-, and Q- is the lower 2n x 2n corner

of t),*.
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In practice, where the measurement noise is nonwhite, the enhanced PMM given by

¢. = Q. - (2.7-145
n

is used. An estimate of _, the measurement noise contributions to the PMM, is obtained
n

by first collecting measurements from the system when the input to the system is identically

zero. Denoting the input measurement noise by nz and the output measurement noise by

nv, then _ is computed as
n

n

The _ product moment matrix henceforth referred to'as enhanced product moment

matrix (EPMM) will reduce to the formulations (2.7-7) and (2.7-11) depending upon the

nature of noise in the data. The EPMM, although computationally less efficient, provides a

more accurate assessment of measurement noise, and consequently, gives a better estimate

of the system order.

An alternate representation of PMM is given as follows:

Q. = E[a.a. T] (2.7- 15)

where
T

an -- [Z0 _]0 Zl _/1"'" Zn--l_/n--1]

and E is the statistical expectation operation. We will refer to Equation (2.7-15) as

the stochastic representation of PMM and the Equations (2.7-7), (2.7-11) and (2.7-14)

as the deterministic representations of PMM. The implementations for each of the above

representations are discussed next.

2.7.3 Deterministic Implementation

The deterministic product moment matrices henceforth referred to as PMMD and

given in Equations (2.7-7), (2.7-11) and (2.7-14) require the processing of the raw input

and output data. The performance of the PMMD algorithm is first evaluated by processing

a single data window of length 32768 points shown in Figures 2.7-1 to 2.7-4. The data is

obtained from the simulation of a truncated state space modal model of the facility. The

subroutine MODEL in Fig. 2.7-6 is used with white noise input to produce output data.

The process is repeated for models of different orders.

The results from three case studies with simulated data are summarized in Table 2.7-1.

For this simulation, a plant with 4 modal frequencies is used, where 2 modes lie between

0 and 1 Hz, and 2 modes lie between 1 and 3 Hz. In Case Study 1, the plant is excited

by a 0-1 Hz input thereby exciting only the lower 2 modes. In Case Study 2, the plant is

excited by a 1-3 Hz input signal thereby exciting only the higher 2 modes. In Case Study 3

the plant is excited by a 0-3 Hz input, thereby exciting all 4 modes. For convenience, the

data for Case Study 3 is depicted in more detail in Figures 2.7-1 through 2.7-5.
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The determinant valuesfor the PMMD algorithm are given in Table 2.7-1 for various
assumedmodel orders, for the various casesmentioned above. It is seenthat the PMM
determinant values for n>4 show small variations about zero. Hence, there is no clear
point at which the determinant vanishesin the PMMD algorithm (results for the stochastic
algorithm PMMS will be discussedin the next section). In this study, a threshold of value
0.1%of the first determinant is usedbeyondwhich the determinant is assumedzero. With
this value, the estimated model order in CaseStudy 1 is n -- 2, in Case Study 2 is n = 3,

and in Case Study 3 is n -- 4. Clearly, these values underestimate the expected model

orders of n* = 4, n* = 4, and n* = 8, respectively. It should be noted that changing

the threshold value will change the estimated model order. The present choice of 0.1% of

the first determinant was found to consistently underestimate the model order and was

useful to initialize the sequential curve fitting approach. In general, however, more work

needs to be done to establish reasonable threshold values for the PMM algorithms based

on objective criteria.

2.7.4 Stochastic Implementation

When the underlying dynamical process is stationary [22], the correlations have the

form:

E[xiyj] = Rxu(j - i)

E[xixj] = Rxx(j - i) = Rxx(i - j)

E[yiyj] = Ru_(j - i) = nuu(i - j)

(2.7-16)

Then by assuming that the process is ergodic, temporal averages are equivalent to ensemble

averages, and the product moment matrix given in (2.7-7) has the simple analytical form:

lim Q(N,n) = Q,(n)
N---*oo

(2.7 - 17)

Q(.1,1) ... Q(.1,.)Q.(n) = •

[ ...

(2.7-18)

Q(.i,j) [ R**(j - i) Ry,(j - i) ]= [R,y(j-i) Ruy(j i)
((2.7-19)
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

SUBROUTINE MODEL(N, Xl, X2, U,Y)

DIMENSION B(10},C(10),FREQ(10), XI (I), X2(1)

DEFINITIONS:

N=NUMBER OF MODES

XI=NVECTOR OF MODAL AMPLITUDES

X2=NVECTOR OF MODAL VELOCITIES

U=SCALAR INPUT

Y=SCALAR OUTPUT

B=NVECTOR_INPUT INFLUENCE COEFF.

C-NVECTOR, OUTPUT INFLUENCE COEFF.

ZETA-SCALAR _ MODAL DAMPING

SISO HUB TO FEED TRANSFER FUNCTION

ASSUMES 3.3LB BOOM MASS

SAMPLE&HOLD INPUT

IDEAL SAMPLED OUTPUT

DATA

DATA

DATA

DATA

B/. 0943,-. 0129, . 274, . 368, 0. , 0. , 0. , 0. , 0. , 0. /

C/-. 319, 2.97, . 238, . 403, 0. , 0. , 0. , 0. , 0. , 0. /

FREQ/. 0745, . 307, . 713, 2.60, 0. , 0. , 0. , 0. , 0. , 0. /

T/. 03/, ZETA/. 007/, PI/3. 1415927/

10

Y_O.

DO 10 I=I,N

WI=2.*PI*FREQ(I_

R=EXP(-ZETA*WI*T)

S=SORT(1.-ZETA**2.)

THETA= ACOS(S)

WN= WI*S

CS= COS(WN*T)

SN=SIN(WN*T)

ZI= (R/S)*(COS(WN*T-THETA)*XI(I_÷SN*X2(I)/WI)

Z2=R/S*(COS(WN*T+THETA)*X2(I)-WI*SN*XI(I))

D=ZETA/S

E=B(I)/WI**2.

ZI=ZI÷E*(1.-R*(CS+D*SN))*U

X2(I)=Z2+E*R.WI*SN*U/S

XI(I)=Z1

Y=C(1)*ZI+Y

CONTINUE

RETURN

END

Fig. 2.7-6 Subroutine MODEL used for Generating System Response.
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This explicitly gives the product moment matrix without requiring any additional pro-

cessing of the input and output data. Thus when correlations are available under these

circumstances, the product moment matrix test can be constructed with considerable fewer

arithmetric operations than those required by the algorithm outlined in the previous sec-

tion. The key practical issues are the validity of the assumptions regarding stationarity

and ergodicity of the signals and the means for calculating the correlation functions based

on finite-time data lengths.

Results of the three case studies with simulated data are summarized in Table 2.7-1.

The case studies themselves have been described in more detail in the previous section on

the PMMD algorithm. Hence, this discussion will focus on results for the PMMS algorithm.

It is seen from Table 2.7-1 that the determinant values of the PMMS algorithm become

negative for certain model orders. At first thought this seems somewhat remarkable.

However, this is easily explained by the fact that the positivity of the product moment

matrix is destroyed by the finite-time estimation of the auto- and cross-covariances in eqns.

(2.7-18) and (2.7-19). Note that this is never a problem in PMMD algorithm, since the

product moment matrix (2.7-7) is defined as a sum of outer-products.

The above numerical example indicates that 30 minutes of experiment time is not

sufficiently long enough to ensure convergence of the correlations required to accurately

describe the product moment matrix. This also indicates that the PMMD is inherently

more reliable for experiments on short horizons. It is interesting to note that the orders

at which the PMMS determinant go negative in Table 2.7-1 roughly correspond to the

system orders as predicted by the PMMD algorithm. There may still be some additional

useful interpretations of the results given by PMMS algorithm. This is an area for further

investigations.

2.7.5 Case Study With Experimental Data

The subroutines PMMD, PMMDN, PMMDE, and PMMS in Figures 2.7-7 and 2.7-8

have been integrated into the experiment software and were used for various identification

experiments. The model order determination menu is given as follows.

MENU (4,4,5)

PRODUCT MOMENT TEST PARAMETERS

0- Exit

111 - PARAM(lll) 8

112 - PARAM(ll2) 0.1

I13- PARAM(ll3) 0

; NHAT = upper bound on # structural modes

; SIGPMM = environmental noise sigma

> 0 PMMD

= 2 PMMDN

= 3 PMMDE

; IDEC -" decimation factor
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114- PARAM(114) 1 ; ISD - Choosealg. (0- PMMD's, 1- PMMS)
115 - PARAM(ll5) 32000 ; NDATA = # time data points ( PMMD's only)

The choiceof PMM routines is based on the experimenter's assessment of the mea-

surement noise. If data is noise free, then PMMD is used with SIGPMM set to zero.

For white Gaussian uncorrelated input and output noise, PMMD is used with values of

SIGPMM chosen as an approximation to the noise variance. If the measurement noise is

colored and significant, the PMMDN will provide an estimate of the autocovariance of the

measurement noise. The PMMDE will use the noise file to modify the "noisy" PMM and

will subsequently use the enhanced PMM to estimate the model order.

As the first step for the determination of the model order, the measurement noise

observed at the input and output is stored in a system file. The PMM test parameters are

set to ISD=0, NHAT=20, and SIGPMM=-I. This enables PMMDN to be called, and the

noise file processed for the computation of _-']_. For a particular identification experiment,
n

a value for the system order will be assumed, i.e., NHAT _< 20. SIGPMM is set to -2

for the PMMDE algorithm to process the input-output data making use of the processed

noise file without any assumptions on the nature of measurement noise. The PMMD and

PMMDE have essentially the same structure; except that for the PMMD algorithms the

measurement noise is assumed white. An estimate of the variance of the measurement

noise SIGPMM is provided from the noise file, and can also be separately estimated from

the PMMDN subroutine. PMMD computes the model order, while SIGPMM is chosen

arbitrarily by the experimenter. The PMMDE uses the noise statistics and modifies the

PMMD matrix, where it assumes that the measurement noise is Gaussian and white. The

PMMDE makes no assumptions on the nature of the measurement noise and appropriately
takes out the contribution of the noise from the PMM matrix. If the noise file is not

available (e.g., a separate experiment for noise determination was not performed), the

PMMDE can provide an assessment of the noise contained in the data by computing

the dynamics of PMM matrix for NHAT=20. A search will be performed to find the

smallest eigenvalue of the product moment matrix which is attributed to the contributions

of the measurement noise. This value will subsequently be used as the variance of the

measurement noise and will then be input to the PMMD.

The PMM algorithms are used for the following identification experiments. A wide-

band input signal is applied to the two hub axis and the system response is observed

through the two collocated hub sens0rsand the levitator sensor. The experiments are

repeated when a narrow band signal of 0-3 Hz is applied to one of the hub axis. A to-

tal of 32768 data points are processed. Figure 2.7-9 shows measured input-output data

and Figure 2.7-10 shows the PMM test results. Using 0.1% of the first determinant as

a threshold for determinant of the PMM as discussed earlier, all versions of the PMM

tests consistently indicate an order estimate of 4 for the system model. The levitator data

shown in Figure 2.7-11 is almost noise free and gives an estimate of 3 as shown in Figure

2.7-12. A hub sensor data taken on other axis indicates that system has an order 4, using

PMMDE and PMMD for SIGPMM=0.01 and SIGPMM=0.0, as shown in Figures 2.7-13
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and 2.7-14. The narrow band experiment shown in Figures 2.7-15 and 2.7-16 indicates

an order of 3. Note that the PMM algorithm is applicable to systems with modes which

are excited due to persistently exciting inputs. The PMMS test did not however produce

meaningful experimental results, essentially due to the stationarity and ergodicity assump-

tions on the signals in the formulation of the PMMS algorithm. The practical value of the

stochastic implementation (PMMS) may also depend on reliable means for calculating the

correlation functions. The PMMS approach can however substantially reduce the compu-

tational requirements for accurately identifying the system model order. The sensitivity

of the stochastic product moment matrix to the breakdown of the necessary statistical

assumptions requires further investigations.
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C

C.

C

C
C

C

C
C

C

C
C
C
C
C
C
C
C
C
C

C

C
C

SUBROUTINE PMMDE(NHAT,NDATR,U,Y,DET,DETR)

NAME: PMMDE (8/3/88)

PURPOSE: TO COMPUTE AND CARRY OUT THE ENHANCED PRODUCT MOMENT

MATRIX TEST (DETERMINISTIC CASE / DOUBLE PRECISION)

INPUTS:

NHAT : INITIAL ESTIMATE OF SYSTEM ORDER (<=20)
NDATA : NUMBER OF DATA POINTS

U : INPUT DATA
Y : OUTPUT DATA

OUTPUTS:

DET(.) : DETERMINANT VALUES

DETR(.) : DETERMINANT RATIOS [DETER(I)=DET(I)/DET(I+I)]

AUXILLARY :

QMAT(.o.) : 2*NHAT x 2*NHAT ENHANCED PRODUCT MOMENT MATRIX

PARAMETER (NDIM=20)

REAL*4 DET(*),DETR(*),U(*),Y(*)

REAL*8 H(2*NDIM,2ZNDIM),G(2zNDIM,2*NDIM),QMAT(2*NDIM,2*NDIM)

REAL*8 QK(2*NDIM,2*NDIM),R(2*NDIM,2*NDIM),D(2*NDIM,2*NDIM)

REAL*8 E(2*NDIM,2*NDIM)
REAL*8 DETM1,DETM2,MIND,SIGMA2

REAL*8 TOTAL1,TOTAL2,TEMPI,TEMP2,STORE1

INTEGER NUMBER,CUTE,POSI,POS2,SPOTI,SPOT2,COUNT,KOUNT,K
INTEGER NHAT,NDATA

C

C
BEGIN TO COMPUTE AND SET UP PRODUCT MOMENT MATRIX.

C

SPOT1=-1
SPOT2=O

DO i0 CUTE=I,NHAT
SPOTI=SPOTI+2
SPOT2=SPOT2+2

POSI=-I
POS2=O

DO 20 Q=I,NHAT
TOTALI=O

TOTAL2=O

DO 30 K=I,NDATA+I
COUNT=K-CUTE

KOUNT=K-Q
IF (KOUNT.LT.O) THEN

TEMPI=O

TEMP2=O
ELSE

TEMPI=U(KOUNT)
TEMP2=Y(KOUNT)

Fig. 2.7-7 Subroutine PMMDE Used for Deterministic Implementations.
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3O

2O

5O

4O
10

109
Ii0

C
C
C

ENDIF

IF (COUNT.LT.O) THEN
STOREI=O

ELSE

STOREI=U(COUNT)
ENDIF

TOTALI:TOTALI+STOREI*TEMP1

TOTAL2=TOTAL2+STOREI*TEMP2

CONTINUE

POSI=POSI+2
POS2=POS2+2

QMAT(SPOT1,POS1)=TOTAL1
QMAT(SPOT1,POS2)=TOTAL2

CONTINUE
POSI:-I

POS2:0

DO 40 Q:I,NHAT
TOTALI:0

TOTAL2:0

DO 50 K:I,NDATA+I
COUNT=K-CUTE

KOUNT=K-Q

IF (KOUNT.LT.O) THEN
• TEMPI=O

TEMP2=O

ELSE

TEMPI:U(KOUNT)
TEMP2=Y(KOUNT)

ENDIF

IF (COUNT.LT.O) THEN
_TOREI=O

ELSE

STOREI=Y(COUNT)
ENDIF

TOTALI=TOTALI+STOREI*TEMP1
TOTAL2:TOTAL2+STOREI*TEMP2

CONTINUE

POSI=POSI+2

POS2:POS2+2

QMAT(SPOT2,POS1):TOTAL1

QMAT(SPOT2,POS2):TOTAL2
CONTINUE

CONTINUE

DO 110 I=I,NHAT*2

DO 109 J=I,NHAT*2

QMAT(I,J):QHAT(I,J)/NDATA
QK(I,J):QMAT(I,J)

CONTINUE

CONTINUE

COMPUTE ESTIMATE OF NOISE VARIANCE SCALE FACTOR

CALL TRED2(QMAT,2*NHAT,2*NDIM,D,E)
CALL TQLI(D,E,2*NHAT,2*NDIM)

Fig. 2.7-7 Subroutine PMMDE Used for Deterministic Implementations (continued).
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C
C
C

69
79

C

CALL TRED2(QMAT,2=NHAT,2*NDIM,D,E)
CALL TQLI(D,E,2.NHAT,2*NDIM)
SIGMA2=MIND(D,2*NHAT)

SETUP ENHANCED PRODUCT MOMENT MATRIX

CALL RNOISE(R,2*NHAT)
DO 79 I=I,2*NHAT

DO 69 J=I,2*NHAT
QMAT(I,J)=QK(I,J)-SIGMA2tR(I,J)

CONTINUE
CONTINUE
DO 60 I=I,NHAT -I

C
C

SET UP THE (N) AUXILIARY MATRIX AS N VARIES FROM 1 TO QDIM.

8O
7O
------

C
C

100
90

60

DO 70 J=l,2*I
DO 80 K=l,2*I

H(J,K)=QMAT(J,K)
CONTINUE

CONTINUE

SET UP THE (N+I) MATRIX.

DO 90 J=1,2.I+2
DO 100 K=1,2.I+2

G(J,K)=QMAT(J,K)
CONTINUE

CONTINUE
CALL DETERM(H,2*I,DETM1)
CALL DETERM(G,2*I+2,DETM2)
DET(I)=DETM1
DETR(I)=DETM1/DETM2

CONTINUE

DET(NHAT)=DETM2
RETURN
END

C

C-
SUBROUTINE TO FIND DETERMINANT.

C
C
C

357
356

SUBROUTINE DETERM(A,SIZE,DETM)
PARAMETER (NDIM=20)
REAL*8 A(2.NDIM,2*NDIM),B(2*NDIM,2*NDIM),DETM,TEMP,VALUE
INTEGER I,J,K,L,M,N,COUNT,SIZE

COPY INTO WORKING FILE.

DO 356 I:I,SIZE
DO 357 J=I,SIZE

B(I,J)=A(I,J)
CONTINUE

CONTINUE

Fig. 2.7-7 Subroutine PMMDE Used for Deterministic Implementations (continued).
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C
C
C

C
C

368

365
C
C
C--

C
C
C

C

379
377
364

C

BEGIN LOOP TO FIND PIVOT ELEMENT .

COUNT=O

DO 364 K=I,SIZE
DO 365 J=K+I,SIZE

IF PIVOT ELEMENT IS SMALLER THEN SWITCH ROW.

IF (ABS(B(K,K)).LT.ABS(B(J,K))) THEN
COUNT=COUNT+I
DO 368 I=I,SIZE

TEMP=B(J,I)
B(J,I)=B(K,I)
B(K,I)=TEMP

CONTINUE
ENDIF

CONTINUE

ZERO OUT THE FIRST COLUMN.

DO 377 M = K + 1,SIZE
IF (B(K,K).EQ.O.AND.B(M,K).EQ.O) THEN

VALUE=O
ELSE

VALUE=B(M,K)/B(K,K)
ENDIF

DO 379 N=I,SIZE
B(M,N)=B(M,N)-VALUE*B(K,N)

CONTINUE
CONTINUE

CONTINUE

CALCULATE DETERMINANT BY MULTIPLYING THE DIAGONAL ELEMENTS.C
C

388

C

C

C

C

DETM=I.ODO

DO 388 K=I,SIZE
DETM=DETM*B(K,K)

CONTINUE

DETM=DETM*((-1)**COUNT)
END

SUBROUTINE TRED2(A,N,NP,D,E)
REAL*8 A(NP,NP),D(NP),E(NP)
IF(N.GT.I)THEN

DO 18 I:N,2,-I
L=I-1
H:O.
SCALE=O.

IF(L.GT.I)THEN
DO II E=I,L

Fig. 2.7-7 Subroutine PMMDE Used for Deterministic Implementations (continued).
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SCALE=SCALE+ABS(A(I,K))
11 CONTINUE

IF(SCALE.EQ.O.)THEN
E(I)=A(I,L)

ELSE
DO 12 K=I,L

A(I,K)=A(I,K)/SCALE
H=H+A(I,K)**2

12 CONTINUE

F=A(I,L)
G=-SIGN(SQRT(H),¥)
E(I)=SCALE*G
H=H-F_G
_(I,L)=F-G
F=O.
DO 15 J=I,L

c Following llne is needed ¢o compute elgenvectors.
c A(J,I)=A(I,J)/H

G=0,
• DO 13 K=I,J

G=G+A(J,K)*A(I,K)
13 CONTINUE

IF(L.GT.J)THEN
DO 14 K=J÷I,L

G=G+A(K,J)_A(I,K)
14 CONTINUE

ENDIF

E(J)=G/H
F=F÷E(J)*A(I,J)

15 CONTINUE
HH=F/(H÷H)
DO 17 J=I,L

F=A(I,J)
G=E(J)-HH*F

E(J)=G
DO 16 K=I,J

A(J,K)=A(J,K)-F*E(K)-G*A(I,K)
16 CONTINUE
17 CONTINUE

ENDIF
ELSE

E(I)=A(I,L)
ENDIF

D(I)=H
18 CONTINUE

ENDIF

c Following llne is needed to compute elgenvectors.
c D(1)=O.

E(1)=O.
DO 23 I=I,N

c From here to .........
c L=I-1

c IF(D(1).NE.O.)THEN
c DO 21J=I,L

Fig. 2.7-7 Subroutine PMMDE Used _r Deterministiclmplementations(continued).
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c G:O.

c DO 19 K:I,L

c G:G+A(I,K)*A(K,J)
c19 CONTINUE

c DO 20 K=I,L
c A(K,J):A(K,J)-G*A(K,I)
c20 CONTINUE

c21 CONTINUE

c ENDIF

c to here is needed to compute elgenvectore.

D(I)=A(I,I)
c From here ......

c A(I,I)=I.

c IF(L.GE.1)THEN

c DO 22 J=I,L

c A(I,J)=0.

c A(J,I)=0.
c22 CONTINUE

c ENDIF

c to here is needed to compute elgenvectors.
23 CONTINUE

RETURN

END

C

C

c

C

C

c

11

12

2

SUBROUTINE TQLI(D,E,N,NP)

REAL*8 D(NP),E(NP)

IF (N.GT.I) THEN
DO Ii I=2,N

E(I-1)=E(I)
CONTINUE

E(N)=O.
DO 15 L=I,N

ITER=O

DO 12 H=L,N-1

DD=ABS(D(M))+ABS(D(M+I))

IF (ABS(E(N))+DD.EQ.DD) GO TO 2
CONTINUE

M=N

IF(M.NE.L)THEN

IF(ITER.EQ.30)PAUSE "too many iterations"
ITER=ITER+I

G=(D(L+I)-D(L))/(2.*E(L))

E=SQRT(G**2+I.)

G=D(M)-D(L)+E(L)/(G+SIGN(R,G))
S=I.

C=I.
P=0.

DO 14 I=M-I,L,-I
F:S*E(1)

Fig. 2.7-7 Subroutine PMMDE Used for Deternlinistic Implementations cont, inucd).
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c From
C

C

C

C

c13
c here
14

15

C

C

C

B=C*E(I)
IF(ABS(F).GE.ABS(G))THEN

C=G/F
R=SQRT(C**2+I.)
E(I+I)=F*R
S=I./R
C=C*S

ELSE
S=F/G
R=SQRT(S**2+I.)
E(I+I)=G*R
C=I./R
S=S*C

ENDIF

G=D(I+I)-P
R=(D(I)-G)*S+2.*CzB
P=S*R

D(I+I)=G+P
G=C*R-B

here to ........

DO 13 K=I,N
F=Z(K,I+I)
Z(K,I+I)=S*Z(K,I)+C*F
Z(K,I)=C*Z(K,I)-S*F

CONTINUE

is needed to compute elgenvectors.
CONTINUE

D(L)=D(L)-P
E(L)=G
E(M)=0.
GO TO I

ENDIF
CONTINUE

ENDIF
RETURN
END

Fig. 2.7-7 Subroutine PMMDE Used for Deterministic Implementations (continued).
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C

C

C

C

C

C
C

C

C

C
C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C
C

C

C

C

SUBROUTINE PMMS(NHAT, IDEC, SIGPMMoSDATA, DET, DETR)

NAME: PMMS (2/22188}

PURPOSE: TO CARRY OUT PRODUCT MOMENT MATRIX TEST

(STOCHASTIC CASE / DOUBLE PRECISION)

INPUTS:

NHAT = UPPER BOUND FOR DIMENSION OF SYSTEM (<-20}

IDEC : INCREMENT FOR LAGS (-Op NOMINALLY)

SIGPMM t MAGNITUDE OF [RROR SIGNAL (=O., NOMINALLY)

SDATA(.,.) = CORRELATIONS

(SDATA(2, N) t RUU(N-I)

SDATA(3pN) = RYY(N-1)

SDATA(4wN) : RUY(N-1)

SDATA(20, N) = RYU(N-1))
OUTPUTS=

DET(.) = DETERMINANT VALUES

DETR(.) = DETERMINAT RATIOS [DETR(1)=DET(I)/DET(I*I)]

AUXILLARY=

QMAT(.,. ) = 2*NHAT x 2eNNAT PRODUCT MOMENT MATRIX

PARAMETER (NDIM=20)

INTEGER NNAT, IDEC

REALe4 SIGPMMpSDATA(22we}, DET(*),DETR(-)

REAL=8 N(RtNDIM, RtNDIM),G(ReNDIMp2wNDIM)

REALES QMAT(2-NDIMp2eNDIM)

REALES DETMI, DETM2

ISCALE=IDEC*I

DO 100 I=I, NHAT

IU=2-(I-1)-I

IY=IU*I

INSERT DIAGONAL BLOCK

QMAT(IU, IU),, SDATA(2,1)

QMAT(IU, IY)': SDATA(4,1)

QMAT(IY, IU)'_ SDATA(4, I)

QMAT(IY, IY),: SDATA(3,1)

DO 5_ J=(I*I),NHAT

JU=2e(J-1)*I

JY=JU*I

INSERT UPPER TRIANGULAT BLOCK

IDIF={J-Z_*ISCALE _ 1

QMAT(IU, JU) = SDATA(2, IDIF)

Fig. 2.7-8 Subroutine PMMS Used _r Stochastic Iml)lcmcntations.
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C

C

C

C

C

50

100

C
C

11e

C

C

C

C

QDIM.

C

170

160

C

C

C

190

180

150

QMAT(IU, JY)-

QMAT(IY, JU)=

QMAT(IY, JY) =

INSERT LOWER

QMAT(JU, IU)"

QMAT(JY, IU)"

QMAT(JU, IY)"

QMAT (JY, IY) z

CONTINUE

CONTINUE

SDATA (20, IDZF)

SDATA (4, IDIF)

SDATA (3, IDIF)

TRIANGULAR BLOCK

QMAT(IU, JU)

QMAT(IU, JY)

QMAT(IY, JU)

QMAT(IY, JY)

DO 110 II'I,2*NHAT

QMAT(II,I1) " QMAT(II, II)
CONTINUE

SIGPMM

DO 150 I=I, (NHAT-1)

SET UP THE (N) AUXILIARY MATRIX AS N VARY FROM

DO 160 J=l,2*l

DO 170 K=I,2_I

H(J,K)=QMAT(J, K)

CONTINUE

CONTINUE

SET UP THE (N_I) MATRIX

DO 180 J=1,2"I'2

DO 190 K=I,2"I'2

G(J,K)=QMAT(J,K)

CONTINUE

CONTINUE

CALL DETERM(H,2*I, DETMI}

CALL DETERM(G, 2*I_2, DETM2)

DET(I)=DETMI

DETR(I)=ABS(DETMI/DETM2)

CONTINUE

DET(NHAT)=DETM2

RETURN

END

TO

Fig. 2.7-8 Subroutine PMMS Used for Stochastic Implementations (continued).
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Fig. 2.7-9 Wide-Band Experiment Data (a) Input Data, (b) Hub Sensor Output Data.

62



3

f.
0

0

O 2 4

Model Order

(a) PMMDE

10

4

3

O

\

2 4 6 8
Model Order

(b) PMMD
SIGPMM=0.0

10

Fig. 2.7-10 The PMM Determinant Tests Using Wide-Band Data

(a) PMMDE, (b) PMMD, SIGPMM=0.0.
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Fig. 2.7-12 The PMMD Determinant Result Using Levitator Data,

with SIGPMM=0.0.
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Fig. 2.7-14 The PMM Determinant Tests Using a Different Axis Data
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2.8 Spectral Estimation Process

2.8.1 Introduction

In this section, a description is given of the spectral estimation process used for non-

parametric transfer function identification. The role of spectral estimation in the overall

identification process has been depicted earlier in Figure 1.1-1. The major portion of the

developmental effort surrounded hosting the computer program CMPSE, taken from the

IEEE Digital Signal Processing software collection [28]. The routine CMPSE is used to

implement periodogram and correlation methods for power spectrum estimation of various

quantities involving the plant input and output sequences.

2.8.2 Background

The basic idea of nonparametric identification of a transfer function via spectral esti-

mation is very simple -- given a measured wide-sense stationary input sequence {u(kT)}

and a measured output sequence {y(kT)}, the (digital) plant transfer function p(exp(iwT))

enjoys the relationship [10][22],

where

p(exp(iwT)) Pu,,(w) = Puy(w) ,

P,,,,(w) = E n,,,,(k)exp(-iwkT)

P"r(w) = E R"r(k)exp(-iwkT)

R,,,,(k) = E[u((k + t)T)u(iT)]

n,,r(k ) = E[u((k + t)T)y(tT)]

(2.8- 1)

, (2.s- 2)

, (2.8-3)

(2.8-4)
(2.8-5)

Thus, given sufficient power in the input, a determination of the transfer function can

be made via (2.8-1). We also note the useful relationship involving the gain of the transfer
function

Ip(exp(iwT)) [2P._(w) -- Gdw) (2.8 - 6)

where

Prr(w) = _ Rrr(k)exp(-iwkT)
k

nrr(k ) = E[y(k + g)T)y(t.T)] (2.8- 7)

Relations (2.8-1)-(2.8-7) require the computation of Ruu, Rye, Ruy and P,,u, Pyy, Puy.

The software program CMPSE performs all of these computations, i.e., estimates both the

covariance and spectral functions. The precise procedure used by CMPSE is outlined in

Figure 2.8-1.
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0 -- Exit
81- PARAM(81) 4096.
82 -- PARAM(82) 32768.
83- PARAM(83) 1.
84- PARAM(84) 1.
85 -- PARAM(85) 2048.
86 -- PARAM(86) 4096.

2.8.3 Integration with System Software

The program CMPSE has been integrated as a subroutine into the experiment soft-

ware, and spectral estimation can be performed via experiment menu. The spectral esti-

mation menu is given as,

MENU (4,4,4)
SPECTRAL ESTIMATION PARAMETERS

; MSE = window section size (2")

; NSE = total # analysis samples

; MODE = mode of operation

; IWIN - window type

; LSE = # correlation values used

; NFFT = FFT size

Here, the variables MSE, NSE and LSE correspond exactly to the quantities M, N and

L, respectively in Figure 2.8-1. The quantities Ruu, Ru_, Ruy, Pu,, P_, P,_ and h =

are all computed by the experiment software using the spectral estimation parameters

specified in the menu. These computed quantities are stored in the SDATA array (see

[14]) for further use.

As an example, the nominal values in the menu are set to perform spectral estimation

by partitioning 32768 data points into 16 overlapping windows of 4096 data points each,

retaining only 2048 lags of the correlations 'produced at the intermediate stage.

2.9 Transfer Function Curve Fit

2.9.1 Introduction

Once the plant has been identified nonparametrically and a frequency domain de-

scription is available, a parametric representation of the transfer function can be found

by curve fitting. In this section, a curve fitting algorithm is discussed which estimates

transfer function coefficients from frequency domain data. An iterative reweighting tech-

nique is introduced to remove the high frequency emphasis and assure minimum variance

estimation.

Some background on the transfer function curve fit is given in Sect. 2.9.2. In Sect.

2.9.3 the curve fit is formulated as a weighted linear least squares problem. A natural

question which arises is how to choose the weighting appropriately to achieve a good fit. For

this purpose, an iterative reweighting technique is discussed in Sect. 2.9.4 which removes

high frequency emphasis, and assures minimum variance estimation. Some discussion of

robust factorization of polynomials is included in Sect. 2.9.5 to support the determination

of frequencies and dampings from the estimated denominator polynomial coefficients. The

various algorithms and subroutines developed to support the transfer function curve fit

were integrated into the experiment software. A discussion of how they are invoked using

menu selection is outlined in Sect. 2.9.6. The overall approach is demonstrated using
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experimental data in Sect. 2.9.7, where it is seen that the iterative reweighting technique

tends to fit the high frequencies best initially, and then extend the accuracy of the fit

down towards the low frequencies as the iterative process continues. Some remarks on the

general relevance of these methods to the on-orbit identification are noted in Sect. 2.9.8.

2.9.2 Background

Assume a transfer function p(-) is of order n

p(z)=b(z)/_(z) (2.9- 1)
with a, b polynomials of degree __ n, and a monic. Then, with

n--1

(2.9-1) is equivalent to

a(z) = z" + E aJzi
j=0

n

b(z)= _b_zi
j=0

n--1 n

_p(z),i,J - _ bjzJ= -p(z)z" (2.9- 2)
1=0 1=0

For M{zi}i=l introduce the matrix Z = {Zii}eR Mx("+l) such that

j--1
Zij = z i ; i = l,...,M ; j=l,...,n+l

and let Z ° _ {Z with the n + 1 °t column deleted}. Let D = diag[p(zl), ... ,p(zM)], and

denote the "data" vector by y = [p(zl)z_,... ,p(zM)z_] T •

Equation (2.9-2) then has the compact representation

 o,0
where

[ ]_a= all, . . . , an-1

b = [b0,...,bn] T

(2.9- 3)

2.9.3 Frequency Weighted Curve Fitting Algorithm

The curve fitting problem is to estimate the vectors _band a_ given D, Z and y (where

(2.9-3) is in general not an equality due to errors). A straightforward approach is to use

a weighted least squares solution. However, a realizable approximation to the transfer

function requires that 1) the polynomial a(z) and b(z) have real coefficients, and 2) b(z)

is stable. We shall enforce constraint 1) and dispense with 2) (although we will monitor

the roots of b). It is noted in the discrete-time formulation used here, that the regression

matrix is based on the functions _eij'_T_" which form an orthogonal set on the interval
t - _ j=0

-'_T --< w --7"<'_ Hence, there is no need to utilize Chebychev polynomials or other class

orthogonal polynomials for the curve fit as recommended in continuous-time formulations

of the problem [25].
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To put (2.9-3) into real form, we just equate real and imaginary parts. Using standard

notation (for z = x + iy, write zR = x and zz = y), we obtain the 2M x (2n + 1) system

Eq. (2.9-4a) leads to the weighted least squares problem

(2.9 - 4a)

_n lAx - blw (2.9 - 4b)
zcT_2n+l

where the proper matrix and vector identifications are made, and W is a user specified

weighting matrix. We note that the matrix W can be used to distinguish the quality of

different information sources (e.g., sine-dwell data vs. spectral estimation data), it can

be used to obtain local 2 nd order fits around resonances, or it can be used to reduce the

inherent high frequency emphasis in the curve fit. The choice of W to ensure minimum

variance estimation will be treated in Sect. 2.9.4.

The vector b and matrix A are formed in the following manner. Given

(1) Sampling interval T

(2) Discrete frequencies {fj}M 1 (in Hz)

(3) Transfer function data

we obtain the ij th component of Z as

j--,
Zij -- z i

so that

= {p(j)}M

= e2nifiT(J -1)

(ZR)ij = cos2rfiT(j - 1)

(Zz)ij = sin2_rfiT(j - 1)

In particular we can obtain

yR(i) = pR(i)cos2_rfiTn - pz(i)sin2_rfiTn

Yz(i) = pR( i) sin 2_r f iTn + pz( i) cos 2_r f iTn

Hence, for 1 < i < M, the components of b in (2.9-4b) are given as

bi = -YR(i),

and forM4-1<i<2M,

bi = -yz(i - M).

To form A in (2.9-4b) we have for 1 < i < M, 1 < j < n

(2.9-5)

(2.9-6)

(2.9- 7)
(2.9- S)

(2.9-9)

(2.0- 10)

(2.9- 11)Ai.i = pR(i)( ZR)ij -- Pz( i)( Zz)ij;
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forl<i<M,n+l_<j_<2n+l

Aij = --(ZR)ij;

forM+l<i<2M, l_<j_<j,

Aij = pz(i - M)(ZR)i-M,j + pR(i -- M)(Zz)i-M,j ;

for M + 1 <i <2M, n+l _<j _<2n+l

Aij = --(Zz)i-M,j-n

(2.9- 12)

(2.9- 13)

(2.9- 14)

To incorporate a (diagonal) weighting matrix W indicated in (2.9-4b) into the above

it is sufficient to premultiply A by W} and b by W}, since

(Ax -b,W(Ax-b)) = (W½Ax- W½b, W½Ax- W_b)

Thus when IV = diag (w21,... W22M), we take Aij _ wiAij and b ---. wibi.

The Fortran subroutine CRVFT in Figure 2.9-1 was developed to implement the least

squares solution to (2.9-4a). In particular, CRVFT sets up A and b as in (2.9-9)-(2.9-14)

and then calls subroutines HFTI, H12 and DIFF from the Lawson and Hanson software

[4]. For convenience, subroutines HFTI, H12 and DIFF are included in Figure 2.9-1 since

some modification was required to assure successful operations. The Lawson and Hanson

routines make use of Householder transformations to robustly compute the least squares

solution with possibly deficient pseudorank (see Chapter I4 of [4]). Robustness to deficient

pseudorank is important in the present application since model order is not clearly defined

when fitting experimental data.

CRVFT also makes use of the subroutine A2FR for robustly factorizing the a(z)

polynomial to determine frequency and damping estimates. A2FR is a special purpose
subroutine discussed in more detail in Sect. 2.9.5.

2.9.4 Iterative Reweighting for Minimum Variance Estimation

In this section, the weighting matrix W is chosen to guarantee a minimum variance

estimate of the parameter vector x, assuming that noise on the spectral estimate is additive,

equal, and uncorrelated at all frequencies. In this case, the choice of W is plant dependent,

leading to an overall nonlinear estimation problem. The nonlinear estimation problem is

solved using an iterative rewcighting process.

In the approach put forth here, a complex valued noise e(z) is assumed to be additive

and independent at each point zk = exp(iwkT), k = 1,..., M and such that

p(z ) - b(z ) +
a(z )

= +

(2.9- 15)
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C

C

C

C

C
C

13

14

15

11

10

12

THF: CU;_Vk" FIT ALGONITHM

SUBKOUTINE C_VFT(M_ N, FSTART, FSTOP, IFLAG, TAU, NI)F, KRANK. REbFHEQ,

*ZETA, RNUM, DN[JMR, ROOTS, GAINEST, PHASEST, GA]NEI_UR }

_EAL-_ A(500_31_ B(_OO.I),G(31),FSTAR'r. FSTOP

REALt8 FREU(_OO)p TFIM(500}, TFRE(50_),H(31)

RLALt8 W(500}, RNORM(1),RNUM(15)pGA]NE_'I'(200),PHASEST(200}

REAL-8 GAlNEROR(200), DNOMR(]5),DFR_Q

CUMPLEX*16 DNOM(15}, ROUTS(32), HT_U, HEST, HST

REAL-8 Dp DDpIH_:TA(14}• RESFRE{J(SPO},ZETA(70)_ VAL, TAU, X, Y,Z

LOGICAL POLISH

INTEGE[_ IP(31}_ IFLAG

N : MODORD

M = DATA LENGTH

D=SAMPLINT

IFLAG=I

NDF= 1

TAU=. 000000000000001

H:15

N=2

MDA=500

MDB=500

D--I. D0/30. DO

OPEN (UNIT=2, FILE= °TFDATA. DAT', STATUS= "OLD" )

DO I I=Ip M

READ(2_*) XpYpZ

FREQ(1)ffiX

TFRE(1)=Y

TFIM(1)=Z

CONTINUE

FSTART=.ODO

FSTOP= .2D0

IF(IFLAG, EQ. 0) GO TO 11

DFREQ= FREQ(3}-FREQ(2}

NSTART=IF]X(FSTART/DFREQ)*I

NSTOP=IFIX(FSTDPIDFREQ}*I

NSTARTI=NSTART-I

NSTOPI=NSTOP_I

DO 13 I=I,NSTARTI

W(1)=0.0

CONTINUE

DO 14 I=NSTARTpNSTOP

W(I}=I.O

CONTINUE

DO 15 I=NSTOPI,M

W(I)=0.0

CONTINUE

GO TO 12

CONTINUE

DO 10 I=I,M

W(I)=I.O

CONTINUE

CONTINUE

Fig. 2.9-1 Curve Fit Subroutine CRVFT and Supporting Subroutines HFTI, H12, &
DIFF.
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C

C

20

110

100

Iii

101

C

112

102

C

113

103

SETTING PROPER DIMENSIONS _QR A MATRIX AND B VECq'O_

NI=N*I

NNI=2_N_I

MI=M-I

MM=2*M

NN=2.N

FILLING OUT WEIGHTING MATRIX W

DO 20 I=MI,MM

IM=I-M

W(1)=W(IM}

CONTINUE

PI=3.14159265

COMPUTING NORTHWEST BLOCK OF "A" MATRIX

DO 100 I=I,M

DO 110 J=I,N

VAL=2oO*PI*FREQ(1)*D*(J-I)

A(I,J)=TFRE(I).COS(VAL)-TFIM(I)*SIN(VAL)

CONTINUE

CONTINUE

COMPUTING NORTHEAST BLOCK OF "A" MATRIX

DO 101 I=I,M

DO III J=NI,NNI

JN=J-N

A(I,j)=-COS(2.0_PItFREQ(1)*D*(JN-I))

CONTINUE

CQNTINUE

COMPUTING SOUTHWEST BLOCK OF "A" MAIRIX

DO 102 I=MI,MM

DO 112 J=I,N

IM=I-M

VAL=2.0_PI*FREQ(IM)tD*(J-I)

A(I,J)=TFIM(IM)*COS(VAL)+TFRE(IM)_SIN(VAL)

CONTINUE

CONTINUE

COMPUTING SOUTHEAST BLOCK OF "A" MATRIX

DO 103 I=MI,MM

DO 113 J=NI,NNI

IM=I-M

JN=J-N

A(I,J)=-SIN(2.0*PI*FREQ(IM)*D*(JN-I))

CONTINUE

CONTINUE

Fig. 2.9-1 Curve Fit Subroutine CRVFT and Supporting Subroutines HFTI, H12, & DIFF

(continued).
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C

200

C

COMPUTING UPPER BLOCK OF WBW VECTOR

DO 200 I=10M

VAL=2.0-P1-FREQ(I}_D-N

B(1,1)=-TFRE(1)oCOS(VAL)+TF']M(1)eSIN(VAL)
CONTINUE

COMPUTING LOWER BLOCK OF "B w VECTOR

DO 300 I=M1,MM

IM=I-M

VAL=2.0tPItFREQ(IM)tDoN

B(Ipl)=-TFRE(IM)tSIN(VAL}-TFIM(IM)tCOS(VAL)

300 CONTINUE

C FORM mA_ MATRIX AND mBm VECTOR

DO 310 I=I,MM

DO 311 J=I,NNI

A(I,J)=W(I)*A(I,J)

311 CONTINUE

B(I,I}=W(I)tB(I,I)

310 CONTINUE

C DO 400 I=I, MM

C A(I, NNI)=0.0

C400 CONTINUE

C CHECK ENTRIES OF WAW MATRIX

C DO d00 I=I,MM

C DO 401 J=I,NNI

C PRINT, A(I,J)

C401 CONTINUE

C400 CONTINUE

C CHECK ENTRIES OF _B n VECTOR

C DO 410 I=I,MM

C PRINT, B(I, I)

d10 CONTINUE

C

C

C

FOR WEIGHTED LEAST SQUARES PROBLEM

NB=I

CALL HFTI(A, MDA, MM, NNI, B, MDB, NB, TAU, KRANK, RNORM, H,G, IP)

PRINT, KRANK

PRINT SOLUTION VECTOR CONTAINING COEFFICIENIS OF DENOMINATOR

NUMERATOR POLYNOMIALS

DO 500 I=I,N

DNOM(I)= B(I,I)
500 CONTINUE

DNOM(N1)=(I.O,0.0)

DO 501 I=I,NI

NI=N+I

RNUM(I)=B(NI, I)

501 CONTINUE

N2=NI_I

DO 510 I=N2, 15

DNOM(1)=0.0

RNUM(I)=O.0

510 CONTINUE

AND

Fig. 2.9-1 Curve Fit Subroutine CRVFT and Supporting Subroutines HFTI, H12, _ DIFF

(continued).
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.%11

512

C

C

610

Pb_INT, (_NUM(1), I=I. 15)

DO 511 I=I, IS

DNOMR(1)= REAL(DNUM(I})

CONTINUE

PRINT, (DNOMI¢( I }, I=1,15)

DO 512 I=I,N

NI=N-I-I

THETA(1)=DNOMR(NI)

CONTINUE

DETERMINING RESONANCES OF THE SYSTEM

DD=D

CALL A2FR(THETA_NpNDFpRESFREQpZETA, DD, ROOTS)

CALL ZROOTS(DNOM. NwROOTS, POLISH}

DO 610 I=N1,14
ROOTS( I }=0. •

CONTINUE

PRINT_ (ROOTS(I}, I=Ip 14}

NI2=N/2

PRINT. (RESFREQ(1), 2ETA(I}, I=I,NI2)

FIND RMS ERROR OF CURVE FIT ALGORITHM

CALL CCJMPR(DpMpNIDFREQpTFREpTFIMpRNUMpDNOM'GAINEROR'GAINEST'

• PHASEST }

PRINTp (GAINEROR(1}. I=1,M}

PRINT_ (|_AINEST( I ), I=I,M}

PRINT, (PHASEST( I }, I=I,M}

END

Fig. 2.9-1 Curve Fit Subroutine CRVFT and Supporting Subroutines HFTI, H12, & DIFF

(continued).
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C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

SUBROUTINE HFTI (A, MDA, M,N,B, MDB, NB, TAU, KHANK, RNO_M,H,G, IP)

C.L. LAWSON AND R.J.HANSON, JET PROPULSION LABORATORY, 1973 JUN 12

TO APPEAR IN 'SOLVING LEAST SQUARES PROBLEMS', PRENTICE-HALL, 1974

SOLVE LEAST SQUARES PROBLEM USING ALGORITHM, HFTI.

REAL*8 A(MDA, N),B(MDB, N),H(N),G(N),RNO_M(N)

INTEGER IP(N)

REAL*8 SM, DZERO, FACTOR, HMAX, TMP, SMI,'I'AU

SZERO=O.

DZERO=O. DO

FACTOR=0.001

HMAX=0.0

LOGICAL IFLAG

IFLAG = .T_UE.
CALL UNDERO(IFLAG)

K=O

LDIAG=MINO(M,N)

IF (LDIAG. LE.O) GO TO 270

DO 80 J=I, LDIAG

IF (J.EQ.I) GO TO 20

UPDATE SQUARED COLUMN LENGTHS AND FIND LMAX

a,

LMAX=J

DO 10 L=J,N

H(L)=H(L)-A(J-I,L)**2

IF (H(L}.GT.H(LMAX)) LMAX=L

10 CONTINUE

IF(DIFF(HMAX_FACTOR*H(LMAX),HMAX)) 20,20,50

COMPUTE SQUARED COLUMN LENGTHS AND FIND LMAX

a.

20 LMAX=J

DO 40 L=J,N

H(L}=O.

DO 30 I=J,M

30 H(L)=H(L)÷A(I,L)*-2

IF (H(L).GT.H(LMAX)) LMAX=L

40 CONTINUE

HMAX=H(LMAX)

o.

LMAX HAS BEEN DETERMINED

50

60

DO COLUMN INTERCHANGES IF NEEDED.

CONTINUE

IP(J)=LMAX

IF (IP(J).EQ.J) GO TO 70

DO 60 I=I,M

TMP=A(I,J)

A(I,J}=A(I,LMAX)

A(I,LMAX)=TMP

H(LMAX)=H(J}

Fig. 2.9-1 Curve Fit Subroutine CRVFT and Supporting Subroutines HFTI, H12, & DIFF

(continued).
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C

C

C

C

C

C

C

C

C

C

C
C
C

C

C

C

C

C

C

COMPUTE THE 3-TH TRANSFORMATION AND APPLY ]3' TO A AND B.

70 CALL HI2 (I,3, J÷I,M,A(I,J), I,H(J),A(I,MIN(J*I,N)),I, MDA, N-J)

80 CALL H12 (2, J,J*I,M,A(I,J), I,H(J), B, I, MDB, N_)

DETERMINE THE PSEUDORANK, K, USING THE TOL£1%ANCE, TAU.

o.

DO 90 J=I,LD]AG

IF (ABS(A(J,J)).LE. TAU) GO TD 100

90 CONTINUE

K=LDIAG

GO TO I10

100 K=J-I

110 KPI=K*I

COMPUTE THE NORMS OF THE RESIDUAL VECTORS.

IF (NB. LE.e) GO TO 140

DO 130 JB=I,NB

TMP=SZERO

IF (KPI.GT.M) GO TO 130

DO 120 I=KPI,M

120 TMP=TMP*B(I,JB)--2

130 RNORM(JB)=SQRT(TMP)

140 CONTINUE

150

SPECIAL FOR PSEUDORANK = 0

IF (K. GT.O) GO TO 160

IF (NB. LE.e) GO TO 270

DO 150 JB=I,NB

DO 150 I=I,N

B(I, JB }=SZERO

GO TO 270

IF THE PSEUDORANK IS LESS THAN N COMPUTE HOUSEHOLDER

DECOMPOSITION OF FIRST K ROWS.

160 IF (K. EQ.N) GO TO 180

DO 170 II=I,K

I=KPI-II

170 CALL HI2 (I,I,KPI,N,A(I,I),MDA, G(1),A, MDA, I,I-I)

180 CONTINUE

IF (NB. LE.O) GO TO 270

DO 260 JB=I,NB

SOLVE THE K BY K TRIANGULAR SYSTEM.

l. i

DO 210 L=I,K

SM=DZERO

I=KPI-L

IF (I.EQ.K) GO TO 200

IPI=I+I

Fig. 2.9-1 Curve Fit Subroutine CRVFT and Supl)orting Subroutines HFTI, H12, & DIFF

(continued).
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C

C

C

C

C
C

C

C

C

C
C

190

200

210

220

230

240

250

260

270

DO 190 J=IPI°K

SM=SM+A(I,J}-DBLE(B(J, jB})

SMI=SM

B(I,JB}=(B(I,JB}-SMI)/A(I,I)

COMPLETE COMPUTATION OF SOLUTION VECTOR.

IF (K. EQ.N} GO TO 240

DO 220 J=KPI, N

B(J, JB}=SZENO

DO 230 I=I,K

CALL HI2 (2, I, KPI,N,A(I,I),MDA, G(I),B(I,JB},I,MDB, I)

RE-ORDER THE SOLUTION VECTOR TO COMPENSATE FOR THE

COLUMN INTERCHANGES•

DO 250 JJ=I,LDIAG
J=LDIAG*I-JJ

IF (IP(J).EQ.J) GO TO

L=IP(J)

TMP=B(L, JB)

B(L, JB)=B(J,JB}

B(J, JB)=TMP

CONTINUE

CONTINUE

250

THE SOLUTION VECTORS, X, ARE NOW

IN THE FIRST N ROWS OF THE ARRAY B(, ).

KRANK=K

RETURN

END

Fig. 2.9-1 Curve Fit Subroutine CRVFT and Supporting Subroutines HFTI, H12, & DIFF

(continued).
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C

C

C

C

C

C

c

(i

L/

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

SUBROUTINE HI2 (MODE, LP]VOT, LI,M,U. IUE, UP, C, ICE, ICV, NCV}

C.L. LAW_ON AN[) R.J.HANSON, JET PROPULSION LABORATORY, 1973 JUN 12

70 APPEAR IN 'SOLVING LEAST SQUARES PROBLEMS', PRENTICE-HALLo 1974

CONSTRUCTION AND/OR APPLICATION OF A SINGLE

HOUSEHOLDER TRANSFORMATION.. Q = I + U*(U--T)/B

M_DE = i OR 2 TO SELECT ALGORITHM HI OR H2

LPiVOT IS THE INDEX OF THE PIVOT ELEMENT'.

LI,M IF L1 ,LE. M THE TRANSFORMATION WILL BE CONSTRUCTED TO

ZERO ELEMENTS INDEXED FROM L1 THROUGH M. IF L1GT. M

THE SUBROUTINE DOES AN IDENTITY TRANSFORMATION.

U(), IUE, UP ON ENTRY TO HI U() CONTAINS THE PIVOT VECTOR.

IUE IS THE STORAGE INCREMENT BETWEEN ELEMENTS.

ON EXIT FROM HI U() AND UP

CONTAIN QUANTITIES DEFINING THE VECTOR U OF THE

HOUSEHOLDER TRANSFORMATION. ON ENTRY TO H2 U()

AND UP SHOULD CONTAIN QUANTITIES PREVIOUSLY COMPUTED

BY HI. THESE WILL NOT BE MODIFIED BY H2.

C() ON ENTRY TO HI OR H2 C() CONTAINS A MATRIX WHICH WILL BE

REGARDED A_ A SET OF VECTORS TO WHICH THE HOUSEHOLDER

TRANSFORMATION IS TO BE APPLIED. ON EXIT C() CONTAINS THE

SET OF TRANSFORMED VECTORS.

ICE STORAGE INCREMENT BETWEEN ELEMENTS OF VECTORS IN C().

ICV STORAGE INCREMENT BETWEEN VECTORS IN C().

NCV NUMBER OF VECTORS IN C() TO BE TRANSFORMED. IF NCV .LE. 0

NO OPERATIONS WILL BE DONE ON C().

_UBROUTINE H12 (MODE, LPIVOT, LI,M,U. IUE, UP, C, ICE, ICV, NCV)

REALt_ U(IUE, M), C(t),CL, CLINV,SMI,UP, ONE

REAL*8 SM, B

QNE=I.

IF (O. GE. LPIVOT. GR. LPIVOT. GE. L1.OR. L1.GT. M) RETURN

CL=ABS(U(I,LPIVOT))

IF (MODE. EQ.2) GO 3"0 6_

._.t_ CONSTRUCT THE TRANSFORMATION. -*_'**

DO 10 J=LI, M

10 CL=AMAXI(ABS(U(I, J) ), CL)

IF (CL) 130, 130, 20

20 CLINV=ONE/CL

SM=(DBLE(U(I,LPIVQT))*CLINV)-t2

DO 30 J=LI,M

30 SM=SM*(DBLE(U(I,J))*CLINV)**2

CONVERT DBLE. PREC. SM TO f;NGL. PREC. £MI

SMI=SM

CL=CL*SQRT(SMI)

IF (U(I_LPIVOT)) 50,50,40

40 CL=-CL

50 UP=U(I,LPIVOT)-CL

U(I, LP]VOT)=CL

GO T't] 70

Fi_. 2.9-1 Curve Fit Subroutine CRVFT and Supporting Sul)routines HFTI, H12, & DIFF

(contimmd).

O_,(,_._N_,,_ PAaE IS

OF POOR QUALITY
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C

C

C

C

****** APPLY THE TRANSFORMATION I+U*(U**T)IB TO C. *f****

60 IF (CL) 130,130p70
70 IF (NCV. LE.O) RETURN

B=DBLE(UP)*U(1, LPIVOT}

B MUST RE NONPOSITIVE HERE. IF B = O.p RETURN.

IF (B) 80,130,130
80 B=ONE/B

I2=I-ICV_ICE"(LPIVOT-1)

INCR=ICE*(LI-LPIVOT)

DO 120 J=l, NCV
I2=I2÷ICV

I3=I2÷INCR

I4=I3

SMmC(I2)*DBLE(UP)

DO 90 I=LI, M

SM=SM*C(I3)*DBLE(U(IpI))
90 I3=I3÷ICE

IF (SM) 100p120p100
100 SM=SM*B

C(I2)=C(I2)÷SM*DBLE(UP)

DO 110 I=LlpM

C(I4)=C(I4)_SM*DBLE(U(IpI))
110 I4=I4_ICE

120 CONTINUE

130 RETURN
END

C
C

DOUBLE PRECISION FUNCTION DIFF(X,Y)
C.L. LAWSON AND R.J. HANSON, JET PROPULSION LABORATORY, 1973 JUNE 7
TO APPEAR IN 'SOLVING LEAST SQUARES PROBLEMS', PRENTICE-HALL, 1974
REAL*8 X,Y
DIFF=X-Y
RETURN
END

Fig. 2.9-I Curve Fit Subroutine CRVFT and Supporting Subroutines HFTI, HI2, & DIFF

(continued).
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Here, the real and imaginary parts of e are statistically independent, and are distributed

as p(en) = g(0, a 2) and p(ez) = N(0, a2), respectively; and e(zj) is independent of e(zk)

for j ¢ k.

Rearranging (2.9-15) gives the M complex equations,

n n--1

p(zk)z_ - Ebjz_ - E ajp(zk)z_ + a(zk)e(zk) (2.9--16)

j=o j=o

which can be put into a complex matrix form analogous to (2.9:3),

(DZ ° - Z)(__) = -y + AE (2.9-17)

where .A = diag[a(zl),... ,a(zM)] and E -- [e(zl),... ,e(zM)] T.

Converting (2.9-17) to real form by equating the real and imaginary parts gives the

noisy generalization of (2.9-4)

-{'DRZ ° DzZ_- =

\ DzZ°R DRZ ° -Zz yz

where the subscript notations "R" and "Z" are used to denote the real and imaginary parts,

respectively, of the indicated quantities. Using matrix notation the equation (2.9-18) can

be put into the equivalent form,

Ax : b + v (2.9 - 19)

where the noise vector v has the following properties,

.ARER (2.9 -- 20a)
AzEz

v "- AzER + AREz ]

E[v] = 0 (2.9 - 20b)

A A = V (2.9- 20c)

It is well known that the minimum variance estimator of x in (2.9-19) is given by solving

the least squares problem,

min lAx - blw

where the matrix I¥ is chosen as the inverse of the noise covariance [29]

(2.9-21)

W -- V -1 (2.9- 22)

It is noted that the optimal weighting W in (2.9-22) is a function of plant parameters

(i.e., the {aj} in particular) and will not be known a priori. Hence, the following iterative

scheme is used,
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0. Assume a = 1

1. Set W = I

2. Estimate z from (2.9-21)

[i i ']3. Calculate (A'A) -1 -- diag _ ,..., _ and V -1 using estimated {aj} and

smooth as a function of frequency

4. Set W = V -1 and go to 2.

The smoothing in 3. is introduced to enhance convergence of the relaxation algorithm

to a global minimum. Without smoothing, resonances estimated early in the iterative
I

process are overemphasized in subsequent curve fits by the' [_(-_) weighting and hence
!

tend to become premature fixed points of iterative optimization procedure. Smoothing is

introduced to avoid this phenomenon.

Two subroutines given in Figure 2.9-2 were developed to perform the weighting and

smoothing tasks. The [_-_)l weighting is performed by the subroutine WEIGHT which

simply substitutes values into the a(z) polynomial. The smoothing is performed by a sub-

routine WSMOOTH which lowpass filters forward in frequency (i.e., treating the frequency

axis as if it were a time axis), and then backwards in frequency (i.e., noncausally) using a

first order lowpass filter with filter constant SF.

As an example, consider

A plot of [_--_) [ is shown

the a(z) polynomial specified by the following coefficients,

als = -.1433157023880846D02

a14 = .9771317541274720D02

a13 = -.4206232200907015D03

a12 = .1279287523027041D04

all= -.2914512176210783D04

al0 = .5144460500626343D04

a9 = -.7176063793295143D04

as = .7994218683170717D04

a7 = -.7135905162079569D04

a6 = .5087115810204192D04

as = -.2866020585540510D04

a4 = .1251072967803763D04

as = -.4091056752151899D03

a2 = .9452747852297180D02

al = -.1379131257627273D02

a0 = .9573564792851850D0

in Fig. 2.9-3 with several different values of smoothing factors.
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C

C

C

C

C

C

C

C

10

20

50

60

THIS ROUTINE TESTS SLIBROUTINE WEIGHT

REAL_8 FREO(400),WS95(400),WS9(400),WS8(400),WS7(400),

@ A(16),T,W(4OO),FDEL,SF

OPEN(9,FILE='WTST.M' ,STATUS='OLD ' )

OPEN(10,FILE='WTSTI.M ,STATUS= OLD ' )

POLYNOMIAL FROM 8 MODE LSTST SIMULATION 16 SIG DIGITS)

A(I =-.1433157023880846D02

A(2 = .9771317541274720D02

A(3 =-.4206232200907015D03

A(4 = .1279287523027041D04

A(5 =-.2914512176210783D04

A(6 = .5144460500626343D04

A(7 =-.717&O63793295143D04

A(8 = .799_218683170717D04

A(9 =-.7135905162079569D04

A(IO)= .5087115810204192D04

A(II)=-.2866020585540510D04

A(12)= .1251072967803763D04

A(13)=-.4091056752151899D03

A(14)= .9452747852297180D02

A(15)=-.1379131257627273D02

A(16)= .9573564792851850D0

NOTE THAT A(O) WOULD EQUAL I

T=.O3DO

FDEL=.OIDO

N=I6

DO I0 I=i,400

FREQ(1)=FDEL_DBLE(1)

CALL WEIGHT(FREQ(I),A,N,T,W_(I))

CONTINUE

MW=400

SF=.95

CALL WSMOOTH(W,MW,WS95,SF)

SF=.9

CALL WSMOOTH(W,MW,WS9,SF)

SF=.8

CALL WSMOOTH(W,MW,WS8,SF)

SF=.7

CALL WSMOOTH(W,MW,WS7,SF)

DO 20 I=1,400

WRITE(9,50) FREQ(1),W(1),WS95(1)

WRITE(IO,60) WS9(1),WS8(1),WS7(1)

CONTINUE

FORMAT(IX,EI2.6,2X,EI2.6,2X,EI2.6)

FORMAT(IX,EI2.6,2X,E12.6,2X,EI2.6)

STOP

END

SUBROUTINE WSMOOTH(W,MW,WS,SFI

THIS ROUTINE SMOOTHS VECTOR W=I/A

W - WEIGI4TING VECTOR TO BE SMOOTHED

MW - SIZE OF W

WS - SMOOTHED WEIGHTING

Fig. 2.9-2 The Subroutines WEIGHT & WSMOOTH with Calling Routine fi)r Test.
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I0

2O

SF - SMOOTHING FACTOR (O<SF<I , O-MINIMUM,

.95 NOMINAL

REAL_8 W(_),WS(_),WSC(2OOO),SF

SMOOTH CAUSALLY

WSC(1)=I.DO

DO 10 I=I,MW-I

WSC(I+I)= SF*WSC(1)+(I.DO-SF)*W(1)

CONTINUE

SMOOTH ANTICAUSALLY

WS(MW)=WSC(MW)

DO 20 I=I,MW-I

WS(MW-I)=SF_WS(MW-I+I)+(I.DO-SF)_WSC(MW-I+I)

CONTINUE

RETURN

END

I-MAXIMUM)

C

C

C

C

C

C

C

C

C

SUBROUTINE WEIGHT(FREO,A,N,T,W)

THIS ROUTINE DETERMINES THE CURVE FIT

FREQ GIVEN DENOMINATOR POLYNOMIAL A

WEIGHT W AT FREQUENCY

FREQ - (I) FREQUENCY OF WEIGHT TO BE DETERMINED

A - (1) POLYNOMIAL I+A(1)/Z+A(2)/Z**2+...+A(N)/Z_*N

T - (1) SAMPLING PERIOD

W - (0) CURVE FIT WEIGHT

REAL*8 FREQ,T,A(_),AREAL,AIMAG,AMODULUS,W,EPS,ANORM,FNORM

DATA PI/3.14i5926535897932384626433DO/,EPS/I.D-15/

DATA FNORM/.0001/

AREAL=I.DO

DO I0 I=I,N

AREAL=AREAL+A(I)*DCOS(DBLE(1)_2.*PI*FREQ*T)

i0 CONTINUE

AIMAG=O.DO

DO 20 I=I,N

AIMAG=AIMAG+A(1)*DSIN(DBLE(I)*2.*PI*FREQ*T)

20 CONTINUE

AMODULUS=DSQRT(AREAL**2+AIMAG**2)

COMPUTE NORMALIZATION BY FNORM AMPLITUDE

AREAL=I.DO

DO 30 I=I,N

AREAL=AREAL+A(1)_DCOS(DBLE(I)_2.*PI_FNORM*T)

30 CONTINUE

AIMAG=O.DO

DO 40 I=I,N

AIMAG=AIMAG+A(1)_DSIN(DBLE(1)_2._PI*FNORM*T)

40 CONTINUE

ANORM=DSQRT(AREAL_*2+AIMAG_2)

COMPUTE WEIGHT W

W=ANORM/(AMODULUS+EPS)

RETURN

END

Fig. 2.9-2 The Subroutines WEIGHT & WSMOOTH with Calling Routine for Test (con-

tinued).
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The plot is generatedby usingthe testing program in Figure 2.9-2which calls subroutines
WEIGHT and WSMOOTH. Someempirical results indicate that the algorithm abovecan
be used with the smoothing factor fixed at SF = .95, and iterated until convergence is

observed in z.

2.9.5 Robust Root Solver

Once the transfer function coefficients are estimated, one can determine the resonant

frequencies and dampings by factorizing the a(z) polynomial into complex conjugate root

pairs. Although this approach is simple in principle, we found that the calculation in

practice is laden with numerical difficulties. We briefly describe an investigation into the

numerical properties of sampled resonance systems and the development of special purpose

software subroutine A2FR to overcome the problem.

The root sensitivity problem has been well-studied in the numerical analysis literature

[18]. Assuming that the roots are on the unit circle, a bound on the root perturbation is

given in Figure 2.9-4. In particular, the sensitivity of the jth root is inversely proportional

to the "product of the secants" from roots i (i not equal to j) directed towards root j.

Hence, if there are any "short secants" pointing to the jth root, the jth root will be very

sensitive to perturbations in the a(z) coefficients.

Simply stated, root sensitivity problems occur when there are short secants in the

pole location diagram. As depicted in Figure 2.9-5, the root sensitivity problem can

be minimized by a judicious choice of sampling period and bandwidth over which the

resonances of the a(z) polynomial lie. In general, for sampled resonance systems, short

secants arise in the following situations

1) a(z) is a high order polynomial

2) the lowest frequency mode is heavily sampled (e.g., more than 20 samples per cycle)

3) modes appear near the Nyquist fold over frequency

4) the "difference frequencies" between closely spaced modes are heavily sampled.

In the present study, the sensitivity was due to situation (2) above, i.e., a heavily

sampled low frequency mode. Due to the extreme sensitivity in the low frequency root,

standard root solving software would typically misinterpret the low frequency conjugate

root pair as two real roots - one inside and one outside the unit circle. This led to

an ambigious low frequency estimate and considerable error in the remaining frequency

estimates.

The special purpose subroutine A2FR, given in Figure 2.9-6, was written to factorize

the a(z) polynomial in the presence of root sensitivity due to oversampled low frequency

modes, and then convert the results to frequency and damping estimates. The routine

A2FR works by first extracting NDF (Number of Difficult to Find) low frequency conjugate

root pairs using Bairstows method and then passing the remaining deflated polynomial to

a standard root solving routine based on Laguerre's method (with polishing) to finish

the job. When the polynomial factorization is complete, the A2FR routine converts the

complex conjugate roots of a(z) to frequency and damping estimates.
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

FILE: A2FR.FOR

THIS ROUTINE CALLS ZROOTS

SUBROUTINE A2FR(THETA,NA,NDF,FREQ,ZETA,T)

THIS ROUTINE ACCEPTS THE ARMA COEFFICIENTS AND RETURNS FREQ

(HERTZ) AND DAMPING ESTIMATES. ONLY THE DENOMINATOR COEFFS

IN THETA ARE USED.THIS IS A ROBUSTIFIED VERSION OF A2F.FOR

WHICH INCORPORATES BAIRSTOWS METHOD TO EXTRACT HARD TO DETERMINE

LOW FREQUENCY ROOTS.

THETA

NA

NDF

FREQ

ZETA

T

VECTOR OF ARMA OR ARMAX COEFFICIENTS SUCH THAT THETA(1) =

A_ I=I,...,NA; WHERE A(Z_$-I)Y=B(ZS_-I)U+C(Z_-I)E AND

A(Z_(-I))=I+AI_Z_(-I)+...+ANA_Z$_(-NA)

ORDER OF POLYNOMIAL A(Z_(-I)) --DIVISIBLE BY 2

NUMBER OF DIFFICULT TO FIND ROOT PAIRS

NA/2 VECTOR OF MODAL FREQ IN HERTZ

NA/2 VECTOR OF MODAL DAMPING

SAMPLING PERIOD IN SECS

REAL_8 THETA(_),FREO($),ZETA(_),P(33),PD(33),RD(33),

PQUAD(3),B(16),C(16),T,PI,RR,RI,W,Z,EPS,DISC

COMPLEX_I6 A(33),ROOTS(32) ,R

LOGICAL FLAG

DATA PI/3.1415927/,EPS/1.0D-30/

CALL DVCHK(FLAG)

NAP=NA+I

NAPP=NAP

LOAD VECTOR P IN REVERSE ORDER

P(NAP)=I.

DO 5 I=I,NA

P(NA-I+I)=THETA(1)

CONTINUE

IF(NDF.EQ.O) GO TO 8

FACTOR OUT NDF DIFFICULT TO FIND ROOT PAIRS WITH BAIRSTOWS METHOD

PROBLEM ROOT PAIRS ASSUMED TO BE NEAR Z=l+Oi

(IE, SAMPLED LOW FREQ MODES)

N3=3

DO 6 I=I,NDF

B(1)=-2.DO

C(1)=I.DO

DETERMINE QUADRATIC FACTOR & PUT INTO PQUAD

CALL DQROOT(P,NAPP,B(I),C(1),EPS)

PQUAD(3)=I.DO

PQUAD(2)=B(1)

PQUAD(1)=C(1)

DIVIDE P BY PQUAD & PUT RESULT INTO PD

CALL DPOLDIV(P,NAPP,PQUAD,N3,PD,RD)

LOAD PD INTO P

Fig. 2.9-6 Subroutine A2FR for Robust Polynomial Factorization and Supporting Sub-

routines-DQROOT, DPOLYDIV, LAGUERD, and ZROOTSD.
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C

C

C

C

C

C

C

C

DO 7 J=I,NAPP

P(J)=PD(J)

CONTINUE

NAPP=NAPP-2

CONTINUE

IF(NAPP.EQ.1) GO TO ii

LOAD VECTOR A AND CONVERT

8 A(NAPP)=DCMPLX(1.,O.)

DO 10 I=I,NAPP-I

A(1)=DCMPLX(P(1),O.)
10 CONTINUE

II

14

15

2O

TO COMPLEX

MNAPP=NAPP-I

CALL ZROOTS(A,MNAPP,ROOTS,.TRUE.)
CONTINUE

AUGMENT ROOTS(I) WITH PROBLEM ROOTS FORMED FROM B&C

DO 15 I=I,NDF

DISC=-B(1)_2+4_C(1)

IF(DISC.GE.O.DO) GO TO 14

IF ROOTS ARE REAL PUT AT Z=l+Oi

B(1)=-2

DISC=O.DO

ROOTS(NA+211-2_NDF)=DCMPLX(-B(1)/2.DO,DSQRT(DISC)/2.DO)
CONTINUE

CONVERT ROOTS TO FREQ & ZETA VALUES

NA2=NA/2

DO 20 I=I,NA2

PRINT _, ROOTS(2_I-I), ROOTS(2_I)

R=ROOTS(211)

Q=REAL(R)

RR=DBLE(Q)

RI=DIMAG(R)

IF(DABS(RR).LE.I.D-30) RR=DSIGN(I.D-30,RR)

W=DATAN2(RI,RR)/T

W=DABS(W)

Z=RR$_2+RIII2

Z=DLOG(Z)

IF(W.LE.I.D-30) W=DSIGN(I.D-30,W)

ZETA(1)=-Z/(2.@W_T)

FREQ(1)=W/(2._PI)

CONTINUE

RETURN

END

Fig. 2.9-6 Subroutine A2FR for Robust Polynomial Factorization mid Supporting Sul)-

routines DQROOT, DPOLYDIV, LAGUERD, and ZROOTSD (continuc(1).
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11

12

C

11

12

13

CONTINUE

PAUSE "too many

RETURN

END

SUBROUTINE DQROOT(P,N,B,C,EPS)

PARAMETER (NMAX=33,ITMAX=IOOO,TINY=I.OD-30)

REAL*8 P(:),Q(NMAX),D(3),REM(NMAX),OQ(NMAX),S,R,

* SC,RC,SB,RB,DIV,DELB,DELC,B,C,EPS

D(3)=I.

DO 12 ITER=I,ITMAX

D(2)=B

D(1)=C

CALL DPOLDIV(P,N,D,3,Q,REM)

S=REM(1)

R=REM(2)

CALL DP_LDIV(Q,N-I,D,3,QQ,REM)

SC=-REM(1)

RC=-REM(2)

DO 11 I=N-I,I,-I

Q(I+I)=Q(1)

CONTINUE

Q(1)=O.

CALL DPOLDIV(Q,N,D,3,QQ,REM)

SB=-REM(1)

RB=-REM(2)

DIV=I./(SB_RC-SC_RB)

DELB=(R_SC-S_RC)*DIV

DELC=(-R_SB+SIRB)*DIV

B=B+DELB

C=C+DELC
I

IF((ABS(DELB).LE.EPS*ABS(_).OR.ABS(B).LT.TINY)

.AND.(ABS(DELC).LE.EPS*ABS(C)

.OR.ABS(C).LT.TINY)) RETURN

iterations in OROOT'

SUBROUTINE DPOLDIV(U,N,V,NV,Q,R)

REAL*8 U(*),V(1),Q(1),R(*)

DO 11 J=I,N

R(J)=U(J)

O(J)=O.

CONTINUE

DO 13 K=N-NV,O,-I

O(K+I)=R(NV+K)/V(NV)

DO 12 J=NV+K-I,K+I,-I

R(J)=R(J)-Q(K+I)*V(J-K)

CONTINUE

CONTINUE

R(NV)=O.

RETURN

END

Fig. 2.9-6 Subroutine A2FR for Robust Polynomial Factorization and Supporting Sub-

routines DQROOT, DPOLYDIV, LAGUERD, and ZROOTSD (continued).
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C

C

C

C

C

C

C

II

THIS FILE CONTAINS SUBROUTINES TO FIND THE ROOTS OF

POLYNOMIALS OF DEGREE M HAVING TERMS A(1)X**(I-1) I=l,

...,M÷I. SUBROUTINE ZROOTS CALLS LAGUER FOR EACH NEW

ROOT UNTIL ALL ROOTS ARE FOUND AND THEN SORTS ALL ROOTS

BY THEIR REAL PARTS. TOP LEVEL SUBROUTINE IS ZROOTS.

ALL VECTORS AND ARITHMETIC IS COMPLEX.

SUBROUTINE LAGUER(A,M,X,EPS,POLISH)
NOTE: SML & CML ADDED TO AVOID DIVIDE BY ZERO

REAL*8 EPS,TINY,DXOLD,YY,ZZ,CDX,SML

COMPLEX*I6 A(*),X,DX,XI,B,D,F,G,H,SQ,GP,GM,G2,ZERo,xx,ww,CML

LOGICAL POLISH,FLAG

PARAMETER "(ZERO=(O.DO,O.DO),TINY=l.D-15,MAXIT=IO0)

DATA SML/I.D-iO0/

CALL UNDFL(FLAG)

CML=(I.D-IOO,I.D-IO0)

IF (POLISH) THEN

DXOLD=CDABS(X)

NPOL=O

ENDIF

DO 12 ITER=I,MAXIT

B=A(M+I)

D=ZERO

F=ZERO

DO ii J=M,I,-I

F=X*F+D

D=X*D+B

B=X*B+A(J)

CONTINUE

IF(CDABS(B+CML).LE.TINY) THEN

DX=ZERO

ELSE IF(CDABS(D).LE.TINY.AND.CDABS(F).LE.TINY)THEN

DX=DCMPLX(CDABS((B+CML)I(A(M+I)+CML))**(I./M),O.DO)

ELSE

G=D/(B+CML)

G2=G*G

H=G2-2.*F/(B+CML)

XX=(M-1)*(M*H-G2)

YY=DABS(REAL(XX))

ZZ=DABS(DIMAG(XX))

IF(YY.LT.TINY.AND.ZZ.LT.TINY) THEN

SQ=ZERO

ELSE IF (YY.GE.ZZ) THEN

WW=(I.DO/(YY+SML))*XX

SQ=DSQRT(YY+SML)_CDSQRT(WW)

ELSE

WW=(1.DO/(ZZ+SML))*XX

SQ=DSQRT(ZZ)*CDSQRT(WW)

ENDIF

GP=G+SQ

GM=G-SQ

IF(CDABS(GP).LT.CDABS(GM)) GP=GM

DX=M/GP

Fig. 2.9-6 Subroutine A2FR mr Robust Polynomial Factorization and Supporting Sub-

routines DQROOT, DPOLYDIV, LAGUERD, and ZROOTSD (continued).
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12

C

I!

12

13

14

15

1 0

16

ENDIF

XJ=X-DX

IF(X.EQ.XI)RETURN

X=Xl

IF (POLISH) THEN

NPOL=NPOL+I

CDX=CDABS(DX)

IF(NPOL.GT.9.AND.CDX.GE.DXOLD)RETURN

DXOLD=CDX

ELSE

IF(CDABS(DX).LE.EPS_CDABS(X))RETURN

ENDIF

CONTINUE

RETURN

END

SUBROUTINE ZROOTS(A,M,ROOTS,POLISH)

REAL*8 EPS

PARAMETER (EPS=I.D-6,MAXM=I01)

COMPLEX$16 A(_),ROOTS(_),AD(MAXM),X,B,C

LOGICAL POLISH,FLAG

CALL OVEFL(FLAG)

DO 11 J=I,M+I

AD(J)=A(J)

CONTINUE

DO 13 J=M,I,-I

X=DCMPLX(O.DO,O.DO)

CALL LAGUER(AD,J,X,EPS,.FALSE.)

IF(DABS(DIMAG(X)).LE.2._EPS$12$DABS(REAL(X)))

1 X=DCMPLX(REAL(X),O.DO)

ROOTS(J)=X

B=AD(J+I)

DO 12 JJ=J,1,-1

C=AD(JJ)

AD(JJ)=B

B=X_B+C

CONTINUE

CONTINUE

IF (POLISH) THEN

DO 14 J=I,M

CALL LAGUER(A,M,ROOTS(J),EPS,.TRUE.)

CONTINUE

ENDIF

DO 16 J=2,M

X=ROOTS(J)

DO 15 l=J-l,l,-I

IF(REAL(ROOTS(1)).LE.REAL(X))GO TO i0

ROOTS(I+I)=ROOTS(1)

CONTINUE

I=0

ROOTS(I+I)=X

CONTINUE

RETURN

END

Fig. 2.9-6 Subroutine A2FR for Robust Polynomial Factorization mid Sul)porting Sub-

routines DQROOT, DPOLYDIV, LAGUERD, and ZROOTSD (continued).
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A generaldiscussionof Bairstow's method and Laguerre's method is beyond the scope
of this report, but can be found in [2]. Briefly, Bairstow's method estimates quadratic
factors of a polynomial using a Newton-Raphson(N-R) iteration, deflating the polynomial
after each quadratic factor is found. Becausea N-R iteration is used, Bairstow's method
can find roots to an arbitrary degreeof accuracy,but requires a good initial guess for each

root pair being extracted. In A2FR, the Newton Raphson iteration of Bairstow's method

is conveniently initialized at complex 1 + i0 since heavily sampled low frequency modes

are known to lie in this vicinity a-priori. After all difficult to find root pairs have been

extracted, the deflated polynomial is passed to a general root solving routine based on

Laguerre's method. In contrast to Bairstow's method, Laguerre's method does not require

any initial guess and can easily find the remaining roots. Hence, by using Bairstow's

method in conjunction with Laguerre's method, the problem roots in the vicinity of 1 + i0

to be found with an arbitrary degree of accuracy and the adverse effect of coefficient

perturbations due to subsequent polynomial deflation is minimized.

In A2FR, the quadratic factors of Bairstow's method are extracted using the sub-

routine DQROOT, polynomial deflation is performed by the polynomial division routine

DPOLDIV, and the standard root solver based on Laguerre's method is implemented

using routines LAGUERD and ZROOTSD. The subroutines DQROOT, DPOLYDIV, LA-

GUERD, and ZROOTSD are based on routines found in Numerical Recipes [2], and are

included in Figure 2.9-6 for convenience.

2.9.6 Integration with System Software

A curve fitting subroutine based on the above theory has been integrated into the

experiment software. A curve fit is specified by the experiment menu as follows:

MENU (4,4,6)

TRANSFER FUNCTION CURVE FIT PARAMETERS

0 -- Exit

121 -- PARAM(121) 1000.

122 -- PARAM(122) 8.

124- PARAM(124) 0.

125 -- PARAM(125) 0.

126- PARAM(126) 1.

128 -- PARAM(128)

129 -- PARAM(129) 1.E-15 ;

130- PARAM(130) 1. ;

191 -- PARAM(191) 1. ;

; MTFCF = # data points to be read in

; NTFCF = order of fitted model (2x#modes)

; FSTART = start freq band (Hz)

; FSTOP = stop freq band (Hz)

; ITFCF = data type flag

; 1 - spec. est.

; 2- sindwell

; 3- compute TF

; 4 - compute YERR, YEST, PUE, PEE

; 5 - append SINFIL with data in FREQ, TFRE, and TFIM

; 6 - calc Re and Im of TREF

; 7- calc modulus (TREF-TF) and store in SDATA (20)

; ICFFIL sine-dwell data storage file

TAU = threshold for singular values

SF = smoothing factor for 1/A weighting

NDF = # difficult to find root pairs
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Here, the quantities MTFCF and NTFCF correspond,respectively, to M and n from

this section. The quantities FSTART and FSTOP specify data in a particular frequency

band, and can be used to "window" the data if desired. The data type flag ITFCF indicates

the type of data to be used in the curve fit (i.e., spectral estimation data, sine-dwell data),

and the type of computation to be performed (i.e., transfer function curve fit, Output

error computation, etc.). If sine-dwell data is used, the storage file number is indicated

by ICFFIL. The value TAU is a threshold on the singular values in a robust least squares

inversion routine taken from [4]. The quantity NDF specifies the number of root pairs

near complex (1 + 0i) which must be carefully removed by a robust root solving routine

discussed in Sect. 2.9.5. The quantity SF is the smoothing factor for the reweighting

defined earlier in Sect. 2.9.4. The choice SF=I defuses the smoothing process in case

smoothing is not desired (e.g., for the initial curve fit).

As an example, the nominal values in MENU (4,4,6) are set to fit a four mode model

using 1000 points of spectral estimation data between 0 and 5 Hz. The choice NDF=I

corresponds to a single heavily sampled low frequency mode which would cause numerical

problems if not specified to the robust root solver.

2.9.7 Case Study with Experimental Data

The curve fit algorithm with iterative reweighting is demonstrated in this section

using real experimental data taken from the JPL/AFAL ground test structure. The input

excitation is chosen as white noise, uniformly distributed between +1.5. The experimental

constants are given by

Sampling time T = .05 sec
Total Run Time = 1638.4 sec

Total Number of Samples = 32768

Actuator Number =HA41

Sensor Number =HA51

The spectral estimation was performed with the following parameters,
NSE=32768

MSE=4096

LSE=2048

NFFT=4096

The transfer function Bode plot, as obtained by the spectral estimation technique

outlined in Section 2.8 is shown in Figure 2.9-7. It is desired to curve fit this data using

the iterative algorithm outlined above.
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Fig. 2.9-7 Transfer Function Estimate ]h(ei2'_-ft)[ Using Spectral Estimation.
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Iteration _1.

The parameters of the curve fit in MENU(4,4,6) set initially as

TRANSFER FUNCTION CURVE FIT PARAMETERS

121

122

123

124

125

126

127

128

129

130

191

6.24000E--02

8.00000E--00

0.00000E--00

0.00000E--00

3.00000E--00

1.00000E--00

0.00000E--00

1.00000E--00

1.00000E-14

1.00000E+00

1.00000E+00

;MTFCF

;NTFCF

;ERROR

;FSTART

;FSTOP

;ITFCF

;KRANK

1.0;ICFFIL

TAU

;SF

;NDF

It is noted that the curve fit is based on a 4 mode model using data between 0 and

3Hz, and the smoothing factor for the initial fit is chosen as SF = 1. The results of

the curve fit are plotted in Figure 2.9-8a, and are superimposed, for convenience, on the

original data in Figure 2.9-8b. The actual estimated parameters are given as

RESFREQ

2.68482562323547

1.93615032936596

0.885720297246297

0.371661120928969

RNUM

2.667572791224959E-002

-0.347097718143222

1.45759741919601

-3.23332172396834

4.43825412037593

-3.9988235177777

2.37004790953087

-0.863238306715730

0.151221467231719

ZETA

6.935074494025807E-003

6.311028753404398E-002

0.150087235080724

0.417671952251777

DNOMR

0.763734578745717

-5.44834387164698

17.7130844726174

-34.3104984507499

43.3387487650913

-36.5781889577652

20.1594579615938

-6.63772897717782

1.00000000000000

Here, RNUM and DNOMR are the estimated coefficients of the b(z) and a(z) polyno-

mials, respectively, and RESFREQ and ZETA are the frequency and damping estimates

obtained from robustly factorizing the a(z) polynomial as discussed in Sect. 2.9.5. It is

seen from Figure 2.9-8 that there is excellent agreement between the data and fit above

2 Hz, but that matching at lower frequencies is poor. Hence, the estimation process will

continue.
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Iteration # 2

Using the iterative reweighting technique outlined in Sect. 2.9.4, the next curve fit is

performed using a smoothing factor of SF = .95. The results are plotted in Figure 2.9-9a

and again superimposed in Figure 2.9-9b on the original data. The numerical estimates

are given as

RESFREQ

2.67833403534730

1.52929655464298

0.661894271068050

0.117973948317708

RNUM

0.3908633303376424

-2.55846947265990

7.58086971124726

-13.2924226437306

15.1209267366128

-11.4811860318949

5.72380975367326

-1.72964961944145

0.245362156074281

ZETA

6.743402652914477E-003

2.193933717986753E-002

3.243351469997596E-002

0.666134888026146

DNOMR

0.909104562067029

-6.50146641694411

21.0232212659114

-40.2392885081865

49.9367819618536

-41.1700641283635

22.0156214697750

-6.97389788048100

1.00000000000000

It is seen from Figure 2.9-9 that there is now excellent agreement above .6 Hz, but

that matching at lower frequencies can still be improved. Hence, the algorithm is iterated

several more times with SF = .95 until convergence is obtained. The numerical results of

each iteration are given below.

Iteration #3

RESFREQ

2.67494555948228

1.42044285989733

0.652000477405587

0.112126702597779

RNUM

0.451866816901085

-2.90399258429018

8.43230707071977

-14.4448183355408

15.9844659934227

-11.7378635967656

5.61674353878678

-1.61446747935643

0.215838388194334

ZETA

7.292945787501519E-003

1.421410134099574E-002

3.616030864378409E-002

0.187788619317773

DNOMR

0.948392472337719

-6.77436268461013

21.8557127336814

-41.6943553559408

51.5202812955275

-42.2472480498091

22.4398859374651

-7.04829952012047

1.00000000000000
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Iteration _/_4

RESFREQ

2.67244274573406

1.37368405071712

0.650697334494611

0.113624972759847

RNUM

0.564465111689107

-3.67715141674060

10.8156714810019

-18.7713591868752

21.0575938714166

-15.6766485282723

7.59283238335803

-2.19888013024134

0.293553767381303

ZETA

8.043442648885062E-003

6.083223897629544E-003

3.676059230245317E-002

0.187885600551214

DNOMR

0.953896928083314

-6.82162600740708

22.0201656815095

-42.0088045568720

51.8858247894536

-42.5087101042217

22.5467635992743

-7.06750378380504

1.00000000000000

Iteration _5

RESFREQ

2.67000344968331

1.36503621372472

0.650898737237889

0.113752209047907

RNUM

0.620050521065320

-4.05379320351566

11.9600934637594

-20.8177087689239

23.4204459743473

-17.4833116486189

8.48593235745119

-2.45947866118802

0.327846632983107

ZETA

8.661824648985038E-003

2.852985277743727E-003

3.649211408759811 E-002

0.187209240934942

DNOMR

0.955727252779591

-6.83604326246442

22.0685276317073

-42.0999803778184

51.9911986695610

-42.5836361923464

22.5770818495063

-7.07286809407923

1.00000000000000
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Iteration _6

RESFREQ

2.66805278162247

1.36538370108693

0.650973772558464

0.113672074464551

RNUM

0.632729530860752

-4.14029191297692

12.2229201436413

-21.2857696801876

23.9585495503371

-17.8946751605791

8.69104205997418

-2.52062878723200

0.336200798463567

ZETA

9.106929382103085E-003

2.080171882987349E-003

3.625769369271443E-002

0.187020739578903

DNOMR

0.955769181570290

-6.83691284755813

22.0731578480721

-42.1116511860108

52.0075271406141

-42.5967401687734

22.5827586986245

-7.07390220335866

1.00000000000000

Iteration _7

RESFREQ

2.66707318851004

1.36684763433731

0.650979720293050

0.113609290131807

RNUM

0.632708417037254

-4.14004342220431

12.2205087377552

-21.2768652375020

23.9423126322335

-17.8783080294831

8.68184619846102

-2.51802028534971

0.335937543624198

ZETA

9.324617160475453E-003

1.866356076126991E-003

3.615786199199247E-002

0.186962373900882

DNOMR

0.955649495444489

-6.83615573469628

22.0713709245612

-42.1097199081578

52.0067354919846

-42.5969203807879

22.5829986807213

-7.07395210430566

1.00000000000000
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Iteration _8

RESFREQ

2.66655390594996

1.36826802072691

0.650969019868184

0.113560798772055

RNUM

0.630693351011426

-4.12632650759666

12.1777329263034

-21.1973057233994

23.8464168652950

-17.8022221830550

8.64336256751223

-2.50677161079163

0.334496910752865

ZETA

9.436688140356413E-003

1.748379226851594E-003

3.609426691662075E-002

0.186911130483292

DNOMR

0.955602326539438

-6.83569727762743

22.0698564192642

-42.1071692879014

52.0041759001754

-42.5952787150502

22.5823435683768

-7.07382646418624

1.00000000000000

Iteration _9

RESFREQ

2.66641966397125

1.36907192858008

0.650957713446217

0.113543739190183

RNUM

0.628755173654102

-4.11297395457326

12.1361329730733

-21.1205589928004

23.7546781645900

-17.7295652305880

8.60622066954573

-2.49560103918734

0.332988873991462

ZETA

9.465197767070372E-003

1.723490367847868E-003

3.608219499836319E-002

0.186901052427773

DNOMR

0.955584624204267

-6.83543633680460

22.0687930612142

-42.1050173618617

52.0016102497990

-42.5933971051415

22.5815446169944

-7.07367527419586

1.00000000000000
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Iteration _10

RESFREQ
2.66649774162126

1.36933858301979

0.650951071231850

0.113547277009458

ZETA

9.448392713026308E-003

1.743956549354619E-003

3.609648855785963E-002

0.186909849416950

RNUM

0.627724705347606

-4.10580524597273

12.1138119966461

-21.0796328485946

23.7060644648940

-17.6911021199320

8.58638153302003

-2.48949866324928

0.332132846135351

DNOMR

0.955587543452579

-6.83536011134953

22.0683132651731

-42.1038096724405

51.9999523834919

-42.5920742667560

22.5809629484524

-7.07356561266829

1.00000000000000

It is noted that convergence to approximately 3 significant digits in the transfer func-

tion coefficients and approximately 5 significant digits in the frequency estimates is ob-

tained after 10 iterations. The results of the last iteration are plotted in Figure 2.9-10a

and in superimposed form in Figure 2.9-10b. It is seen that agreement over all frequencies

is good. A magnitude plot of the transfer function curve fit error is given in Figure 2.9-11,

where it is seen that the maximum errors are approximately 10dB down from the signal

levels at the corresponding frequencies.

2.9.8 General Remarks

The lessons learned while developing and testing the algorithms of this section can be

summarized as follows,

1) Curve-fitting based on the equation error least squares approach has an inherent high

frequency emphasis which must be removed before accurate fits are possible. This is

performed in our software using an original iterative reweighting algorithm to establish

minimum variance estimation. This reweighting approach was seen to work very well

on the actual experimental data with little human intervention required. However, we
note the next lesson.

2) The present methodology is not yet fully automated, since there is still some judg-

ment needed in specifying the model order for the curve fit, and in determining the

.smoothing factor for the iterative reweighting. Presently, there is on-going work on
both of these issues.
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3)

4)

When modes are close together with respect to the sampling frequency, or when there

is a low frequency mode which is heavily sampled there are numerical problems in

determining the polynomial roots and estimating frequencies. This problem arose in

the present effort and required special software to be developed to remove the low

frequency mode.

The length of the experiment appears to be driven by the frequency of the lowest

mode. Two basic problems associated with accurately estimating and fitting the low

frequency mode are poor resolution due to the sparseness of FFT data points in

the vicinity of the low frequency mode (i.e., for a given FFT frequency spacing, the

smallest number of data points fall on the lowest mode) and the large variance of the

spectral estimate. Of course in spectral estimation, resolution and variance one can

always be traded off against the other by adequate choice of data windowing. However,

the only method to resolve both problems is by going to a longer experiment time.

We were forced to go to a longer experiment time (i.e., (.05 secs)(32768) = 1638 secs

= 27.3 minutes) to resolve the mode and curve fit it satisfactorily.

2.10 Output Error Analysis

2.10.1 Introduction

The analysis and design of robust controllers requires more information about the plant

than simply a nominal estimate of the plant transfer function. Information is also required

concerning the uncertainty in the nominal estimate, or more generally, the identification

of a model set within which the true plant is known to lie.

Precisely how to go about identifying model set membership to best support robust

control design is not known, and in fact, is presently an active area of research. For

the present effort we have chosen to use a simple but useful characterization of the model

uncertainty based on the output error. This is essentially a characterization of the additive

uncertainty in the plant model, and has found considerable use in robust control analysis

and synthesis [24].

2.10.2 Background

Consider the single-input single-output plant p with transfer function spectral estimate

h = P,,y/P,,,, where u and y are the input and output of the plant. Assume that an

identified parametric model _ is produced as a result of system identification efforts. The

additive uncertainty (6m = p- P) in this work is then estimated as the quantity A, where,

A = P,,JP,,,, (2.10- 1)

where e = y - _ is the output error. A simple method to generate A is

1) Run an experiment with wideband excitation input u to plant p yielding output y

2) Apply the identification techniques to obtain the identified parametric model

3) Compute the output _ of the identified model _ subjected to the same input u
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4) Compute output error e = y -

5) Compute A by cross spectral analysis,

A = P.UP..

In principle, this approach has the added advantage that system and measurement

noise uncorrelated with u will not affect the estimate of A.

Motivated by simplicity, it is very tempting to dispense with the above procedure,

and estimate the additive uncertainty directly by the curve fit error v where,

r=h-_ (2.10-2)

However, _- in eqn.(2.10-2) is generally a much worse estimate of 5m than A in eqn.(2.10-1).

This will be demonstrated both analytically and by numerical example in Sect. 2.10.3.

The usefulness of the output error for LSS robust control design has been considered

earlier by Kosut in [12]. The discussion here will closely follow his presentation.

Let S denote the set of stable single-input single-output rational transfer functions

(rational in the delay variable z-l). A compensator C is said to stabilize plant p if the

following three transfer functions are in S:

Cl(1 + pC)

1/(1 + pC)

p/(1 + pC)

Then we have the following result

Theorem 1

(i) Stabilization

If p C S then C stabilizes p if and only if C = Q(1 -pQ)-i for some Q c S

(ii) Robustness

If p =/3 + 5m, and if some compensator _' stabilizes/3, then it also stabilizes p if and

only if,

where

_m(1.-lt- _rnO)--I e S (2.10-3)

Part (i) of this result says that a plant is open-loop stable, then the set of all rational

compensators that stabilize p, denoted by S(p), is given by

S(p) = {O(1- pO)-I : Q e s}
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Hence, any stabilizing controller must produce a Q which is in S, and conversely.

Part (ii) of the result gives conditions on when the controller C designed for nominal

plant # is robustly stable to a plant perturbation _m. Here, the nominal plant /5 and

perturbation 6m can be unstable. However, when 6,_ E S condition (2.10-3) reduces to

(1+ _m0)-' e s

a sufficient condition for which is that,

116m(_J_r)ll
IIQ(_J_T)II

for all w E [-oo, c_] (2.10 - 4)

Note that Q can be computed directly from _ and C', and _,_ can be approximated by

A = P_e/Puu • Hence, (2.10-4) is a simple condition to check for stability robustness of

a specified controller. The use of this condition for robust control synthesis is outlined in

Fig. 2.10-1 where it is embedded into an iterative design methodology. The idea behind

the iterative approach is to design a sequence of controllers (robust in some sense) with

increasingly good performance until the robust stability condition is violated. Any of a

number of existing robust design techniques can be used for this purpose.

2.10.3 Numerical Example

It was mentioned earlier in Sect. 2.10.1 that of the two plausible methods for esti-

mating the additive uncertainty, the quantity A in eqn.(2.10-1)is a much better estimate

than v in eqn.(2.10-2). Some insight can be gained by considering the diagram of Figure

2.10.2. In order to aid the discussion, a (ficticious) quantity h which is the cross-spectral

estimate of the predicted output _) = _Su with u (here u is assumed to be the same as used

in the physical experiment) is defined, i.e.,

= Pu_IP_.

Using eqn.(2.10-5), eqn.(2.10-1) can be written as

(2.10-5)

A = P,,UP,,,,= Puy/Pu. - P._/P.u = h - _ (2.10- 6)

The fact that r and A are estimates of the additive uncertainty 6m can be seen more

clearly by rearranging eqns. (2.10-2) and (2.10-6), respectively, to give,

_=(h-v)+(v-_)=_+6m (2.1o-7)

where,

A=(h-p)-(h-_)+(p-_) =e-7+Sm (2.10- s)
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 -h-p (2.10-9)

--- h- 15 (2.10- 10)

It is emphasized that eqns. (2.10-9) and (2.10-10) are precisely the errors incurred from

using spectral estimation to estimate quantities p and i5, respectively. This relationship is

depicted schematically in Figure 2.10-2. The reason that A is a much better estimate of

5m than r is easilty seen from the variance of the estimates. Assuming negligible bias on

the spectral estimation errors (2.10-9) and (2.10-10), it follows from (2.10-7) and (2.7-8)

that,

Vat[r] = Vat[,] (2.10-11)

Var[A] = Var[e] - 2Cov[¢_] + Var H (2.1o-12)

Assume for the moment that the estimate of the plant is very precise, i.e., 15 = p. Then

e = _ and it follows that,

= gemini

Va [A] =0

Clearly, A is a much better estimator of 5,n than r in this case. In the experimental case

where p is close to but not equal to ifi, by continuity e will be strongly correlated with _ and

the negative term in eqn. (2.10-12) will reduce the variance of the estimate significantly

over (2.10-11). Hence, the quantity A will generally be a much more accurate estimate of

the additive uncertainty 5m than r.

Results from a simulation example are presented to illustrate these concepts. Figure

2.10-3 shows the transfer function spectral estimate of the plant h = Puy/Puu. Figure

2.10-4 shows the identified parametric model _'. The gain of the transfer function curve

fit error r = h - _ is shown in figure 2.10-5. The output error e = y - _" is shown in

figure 2.10-6. The estimate A = Pu,/P_ is shown in figure 2.10-7. As this is a simulation

example, the actual plant p is known. The exact additive uncertainty 5m is determined

and plotted in figure 2.10-8. It can be seen that A constitutes a very good approximation

of 5m, much better than r. In fact, the transfer function error T is much larger than A or

5m, by up to 30 db for low frequency values.
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Figure 2.10-9 shows a second identified parametric model ff for the plant through a

different process. Figure 2.10-10 presents the output error e J which indicates that this

second model identified is not as good as the first one. This is reflected in figure 2.10-11

which shows the additive uncertainty A t = Pu_,/P_,u for this case. The uncertainty/k _ is

larger than A by as much as 30 db for the lowest frequency mode. However, the transfer

function error r t for this case in Figure 2.10-12 is not too much different with that of

figure 2.10-5. The curve fit errors, r and r t, are'dominated by the translation vector due

to processing and is not a sensitive measure of the modelling performance. The additive

uncertainty A is defined as the measure of model uncertainty for later analysis.

2.10.4 Integration With System Software

The output error analysis can be performed in the experiment software under the

menu of transfer function curve fitting:

MENU (4,4,6)
TRANSFER FUNCTION CURVE FIT PARAMETERS

0 -- Exit

121 -- PARAM(121) 1000.

122 -- PARAM(122) 8.

124 -- PARAM(124) 0.

125 -- PARAM(125) 0.

126 -- PARAM(126) 1.

128 -- PARAM(128)

129 -- PARAM(129) 1.E-15

130- PARAM(130) 1.

191 -- PARAM(191) 1.

; MTFCF = # data points to be read in

; NTFCF = order of fitted model (2×#modes)

; FSTART - start freq band (Hz)

; FSTOP = stop freq band (Hz)

; ITFCF - data type flag

; 1 - spec. est.

; 2- sindwell

; 3- compute TF

; 4 - compute YERR, YEST, PUE, PEE

; 5 - append SINFIL with data in FREQ, TFRE, and TFIM

; 6 -calc Re and Im of TREF

; 7- calc modulus (TREF-TF) and store in SDATA (20)

; ICFFIL sine-dwell data storage file

; TAU = threshold for singular values

; SF - smoothing factor for 1/A weighting

; NDF = # difficult to find root pairs

After an identified parametric model is obtained, setting ITFCF=4 in the TRANSFER

FUNCTION CURVE FITTING mode of operation then calls for the computation of _,

stored in array YEST, the output error e, stored in YERR, the cross spectral density

P_, stored in PUE, and the power spectral density of e, P_, stored in PEE. Though

not specified, the additive uncertainty A is also computed as P,,_/P,_,,. The parameters

adopted for spectral analysis here are the ones set for SPECTRAL ESTIMATION (refer

to section 2.8) at this time. When needed, the arrays YEST and YERR, containing _" and

e, can be swapped with the content of y by running the DATA COMPOSITION mode of

operation with IDC set at 4 and 5 respectively.
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Chapter 3. EXPERIMENT RESULTS

3.1 Introduction

This Chapter details the experimental results obtained through implementation of the

integrated ID software to the testbed structure. Several investigations utilizing wideband,

narrowband, and sine-dwell excitations were performed. Areas of investigation included

reduced order model identification, residual mode excitation and analysis, system nonlin-

earity, and noise anomaly. The results enabled a better understanding and characterization

of the structure, and demonstrated the performance and versatility of the software algo-

rithms.

This chapter is organized as follows: The next section, titled "On-orbit Scenarios,"

deals with the "would be" scenarios of on-orbit and automated system model identification.

It is divided into four subsections. Section 3.2.1 describes the procedures adopted in this

analysis to perform system model determination based on experimental data. Section 3.2.2

presents the identification results obtained via wideband excitations implemented through

different sensor and actuator instrumentations. Some characterization of the testbed struc-

ture is also discussed. Sections 3.2.3 and 3.2.4 present the results of investigating the

system with narrowband excitation and data composition, respectively.

The identified models obtained through the automated procedures in section 3.2.1

constitute the "reduced order" models determined according to the numerical precision

of the algorithms, i.e., some "weak" modes will not be included in this identified model.
Section 3.3 describes the excitation and evaluation of these so-called residual modes for

better understanding of their dynamics. Two residual modes are studied. Results and

analysis are given in section 3.3.1, for the first residual mode, and section 3.3.2, for the

second one.

The linear (or nonlinear) properties of the structure were investigated and are pre-
sented in section 3.4. Both wideband and sine-dwell excitations were used to characterize

the nonlinearity of the testbed structure. Respective results are given in section 3.4.1

and 3.4.2. A nominal set of parameter values was adopted for the present analysis. The

effects of variation of some of the parameters, namely, the spectral estimation parameter

and smoothing factor, on the identification results and performance are presented in two
subsections of section 3.5.

Initial experimentation on the testbed structure revealed that the hub sensors were

contaminated with appreciable colored noise of approximately 6 Hz frequency. As a re-

sult, analog filters were put into the system to remedy the situation. Discussion of this

problem as well as comparisons of experimental results using noisy and improved sensors

are presented in the final section.
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3.2 On-orbit Scenarios

3.2.1 Automated Identification of Reduced Order System Model

As discussed in Chapter 1, on-orbit autonomous system identification constitutes an

important element in future large space structure development and deployment. Demon-

stration of such capability is therefore the intent of these first experiments. A system

of automated procedures was developed which would systematically execute various algo-

rithms of the integrated ID software to yield an identified model for the system based on its

excitation and response, in absence of any decision from expert systems such as analysts or

operators. These automated identification procedures were based on experiences gained in

simulation studies of the ID software and yielded reasonably good results for the physical

experiments.

Figure 3.2-1 shows the automated identification procedures adopted for the present

experiments. The input u and output y are fed into the algorithms for spectral estimation

and the PMM test. The spectral estimation algorithm computes the input and output

auto- and cross-correlations, power spectral densities (PSDs), and P,,y/P,,,,. The quantity

P,,y/P,,,, provides an estimate of the system Bode Plot and is termed the transfer function

spectral estimate (TFSE) h. The PMM test yields the estimated system model order,

rno, which is the estimate of the number of states in the system as reflected by its input

and output. The identification process that follows involves initializing a certain modal

order n for the system based on the PMM result, curve fitting P,,y/Puu by a transfer

function of the assumed order, and evaluating the quality of the curved fitted model via

output error analysis. This process is then repeated for the assumed modal order of n + 1.

Output error analysis results of the curve fitted models are compared. If the performances

are comparable, the adopted model will be the one with the modal order n. If not, the

identification process is again repeated for assumed modal order of n + 2, after which

the performances of the curve fitted models of assumed modal order n + 1 and n + 2 are

compared. The process of incrementing assumed modal order and comparing output error

performances is continued until the performances are comparable , in which case the curve

fitted model with the smaller assumed order is adopted as the identified parametric model.

Note that except for the PMM algorithm the system order is given in terms of the modal

order which is the number of modes in the system. A system with a modal order n has a

model order of 2 • n in state space representation.

Several details of the present procedures are noted:

1. The initial modal order estimate n assumed for the system could well be assigned as

1. The PMM algorithm is included here to facilitate a closer initial model (and hence,

modal) order estimate and to enable saving of computational efforts. Based on the

PMM model order estimate too, the system modal order estimate n is initialized in the

procedures as tool2 or the next higher integer. Generation of the PMM model estimate

rno from experiment data is based on the 0.1% criterion which means using 0.1% of the

first determinant as-the threshold value. Determinant values lying below the threshold

value are regarded as zeros. As was discussed in Section 2.7, this criterion is shown

through simulation and experiment examples to have a tendency to underestimate the
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order of the "best" model which minimizes the output error. More efficient methods

for model order estimation remain to be investigated.

2. The curve fitting process is not straightforward by itself. As depicted in the figure, it

involves initially performing curve fitting of the TFSE h = P,,y/P,,,, with smoothing

factor SF = 1.0 which amounts to uniform weighting of the spectral data (W=I in

eqn. (2.9-21)). This yields a first estimation of the system model of the assumed modal

order. This first estimate, however, inevitably emphasizes high frequency modes as

there are more data corresponding to high frequency modes than low frequency ones.

It is therefore necessary to curve fit h again, this time with SF = 0.9. This utilizes a

non-uniform weighting (W#I) emphasizing the low frequency data, computed based

on the first estimate (see Steps 0 through 4 in Section 2:9.4). With SF remains at

0.9, this updated estimate forms the basis for generating yet another non-uniform

weighting for the next curve fitting of h. The process is continued until finally the

system model estimates converge. The converging estimate is then adopted as the

curve fitted model of the assumed order. The present work does not specifically set

a percentage margin for model estimate convergence though it can certainly do so

without difficulties. From experiences, convergence to high accuracy is reached after

performing six or seven curve fitting trials on h.

3. The output error analysis is carried out after the curve fitted model of the assumed
model order is reached. It includes computation of the output _ of the curve fitted

model subjected to the same input u, the output error e = y - _', and the additive un-

certainty spectral estimate A = P,,_/P,,,,. Naturally, smaller values for Pu_/P,,u imply

a better estimate of the system model. The adopted procedure takes the maximum

gain of A as an indication of the performance or quality of the curve fitted model.

4. After completing the processes of curve fitting and output error analysis for the as-

sumed modal orders of n and rt + 1, the maximum gains of A are compared. If there

is an appreciable improvement (i.e., reduction of maximum A gain) in the assumed

modal order case, the process is conducted with an assumed modal order of n + 2

after which maximum values of A are compared for the assumed modal order of n + 1

and n + 2. If not, the curve fitted model corresponding to the smaller modal order

will be taken as the identified parametric model, and its additive uncertainty spectral

estimate A would give a frequency domain measure of its ability to approximate the

actual system. The identified parametric model is thus the curve fitted model of the

lowest assumed modal order that yields the best possible performance. To quantify,

the present procedures considered an approximate 10% reduction as an appreciable

improvement.

The adoption in the procedures of the 0.1% criterion for PMM model order estimation,

a starting modal order estimate of n = too�2 or the next higher integer, smoothing factor

SF = 0.9 for subsequent curve fitting, and the 10% margin for output error performance

improvement were derived from trials. For the present experiment, they yielded reasonable

results. Different values, however, can be adopted for other experiments. For example, if

there is a concern about the PMM estimate of the model order a more or less conservative

modal order of n mav be initialized for the identification process. As a final note, it has
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been observed that for the ease where the assumed modal order is too large, the extra

mode(s) in the curve fitted model would move under the shadow of a dominant mode, and

for some values of SF this mode(s) may become unstable. The adopted value of SF = 0.9

yielded stable curve fitted models even when the assumed modal order is excessive.

3.2.2 Wideband Excitation (0-10 Hz)

Wideband excitation experiments utilize as inputs uniformly distributed random num-

ber sequences. Experiments were performed about the 1-7 axis and 4-10 axis of the struc-

ture utilizing their respective hub actuator and sensor. Experiments were also performed

for the 4-10 axis using the hub actuator and levitator sensor. For all experiments described

in this section, the sampling frequency was 20 Hz. The experiment time was 1638.4 sec,

amounting to a data sequence of 32768 for u and Y. The amplitude of the input was 1.5

nt-m, out of a full range of 2 nt-m.

3.2.2.1 The 1-7 Axis -- Hub Actuator/Hub Sensor

This section presents the wideband excitation results of the 1-7 axis of the structure

using the hub actuator HA10 and sensor HS1. The final result is an identified parametric
model which is in fact a reduced order model for the 1-7 axis at the selected input/output

points. As this section also serves to illustrate for the first time the automated identification

procedures described in the previous section, presentation will be detailed.

The input and output data of the experiment are presented first. Figure 3.2-2 shows

the time history of u for 200 sec. Figure 3.2-3 shows the time history of y for 200 sec, and

figure 3.2-4 shows the same for 40 sec. The adopted parameters for spectral estimation

were MSE=2048, NSE=32768, LSE=1024, and NFFT=2048. Physical interpretation of

these parameters will be given in section 3.5.1. The autocorrelation and PSD of u, Ruu and

P,,,,, are shown in figures 3.2-5 and 3.2.6. The autocorrelation, R==, closely resembles a

A-function. The PSD P=u shows that u has uniform power density for all frequencies up to

10 hz, half of the sampling frequency. The whiteness of the input is thus verified. The PSD

of the output, Py_, is shown in figure 3.2-7. The PSD of the input/output cross-correlation,

P,,y, is presented in figure 3.2-8. The gain and phase of the TFSE, h = P,,y/P,,,,, is shown

in figure 3.2-9. These figures all indicate the existence of five modes with approximate

frequencies 0.1 Hz, 0.6 Hz, 1.7 Hz, 2.6 Hz, and 5 Hz. For convenience, they will from now

on be designated as the 1st, 2nd, 3rd, 4th, and 5th modes of the system. Among them,

the 2nd mode is the most dominant, followed by the 1st and 4th mode.

Figure 3.2-10 shows the PMM test results generated with the PMMDE algorithm

which takes into account the presence of sensor noise through the construction of a noise

file. In this experiment where the analog filters are in place, the noise level is minimal.

A representative time history of the noise in the hub sensor HS1 is given in figure 3.2-11.

Another way of approximating the effect of the noise through the use of a diagonal noise

matrix is also possible with the algorithm PMMD, in which case an assumed parameter

SIGPMM is used to model the strength of the noise. As the noise is small in the present

setup, PMMDE results match closely to that of PMMD with SIGPMM=0. Detail descrip-

tions of these PMM algorithms can be found in section 2.7. The PMM test of figure 3.2-10

indicates an estimated model order of mo = 4 according to the 0.1% criterion.
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Following the automated identification procedures, a curve fitted model of assumed

modal order n = rno/2 and its corresponding output error are to be generated first. The

curve fitting process is presented in figure 3.2-12. It shows the sequence of curve fitting com-

putations until convergence of the estimates. The gains of the estimate transfer functions

are shown on the left column and their modal data of frequency and damping coefficients

on the right. The first estimate in figure 3.2-12 was generated with SF = 1.0. All others

were generated with SF = 0.9. The full range of h was: used for curve fitting as this was

a wideband experiment. The process was terminated when the frequency and damping

values converged to reasonably high accuracy. The convergent estimate constitutes the

curve fitted model for the assumed modal order of 2.

The curve fitted model is shown in more detail in figure 3.2-13. It yields two modes

of frequencies 0.658 Hz and 2.67 Hz, and damping coefficients 0.062 and 0.00858. They

correspond to the 2nd and 4th mode of the system. The other modes were not fitted. Figure

3.2-14 shows the output error e = y - _ where _ is the output of the curve fitted model of

figure 3.2-13 subjected to the same input u of figure 3.2-2. The error e clearly indicates the

presence of the 1st mode which is the most dominant of the unfitted modes. Figure 3.2-15

shows the additive uncertainty A = P,,c/Pu,,. At the identified modal frequency of 0.658

Hz and 2.67 Hz, the values of A are roughly 20 db down from that of h in figure 3.2-9.

The dynamics of the actual system at those frequencies are being modelled to roughly 10%

by the curve fitted model. Since the 1st mode was not fitted, the additive uncertainty A

is just about the same as h at around 0.1 Hz. As a result, the maximum value 19.7 db of

A occurs at this frequency. The overall characterization of the output error for the curve

fitted model of assumed modal order 2 is therefore 19.7 DB.

Next in the identification process is the curve fitting of a model of assumed modal

order 3. Figure 3.2-16 shows the sequence of curve fitting computations until convergence

of the model estimates. Again, the first computation used even weighting (SF = 1) over

the full range (0-10 Hz). Subsequent computations used SF = 0.9 and emphasized the

low frequency portion of the spectrum. Convergence occurs after six computations and

agreement was within 0.1%. It is interesting to note that the 1st mode of 0.126 Hz gradually

came in as the third curve fitted mode during later computations. Figure 3.2-17 shows

the convcrged curve fitted model and modal data. The identified modes are of frequencies

0.126 Hz, 0.666 Hz, and 2.68 Hz, and of damping coefficients 0.32, 0.0564, and 0.00746.

Figure 3.2-18 shows the computed output _" of the curve fitted model subjected to actual

input u. The computed output _ is in good agreement to the actual output y of figure 3.2-

3. Their difference, e = y - _, is shown in figure 3.2-19. Improvement of figure 3.2-19 over

figure 3.2-14 is obvious as e now has a smaller error component of the 1st mode, resulting

in smaller error amplitude. The power spectral density of e, Pc_, is shown in figure 3.2-20.

Its values at the identified modal frequencies are more than 20 db smaller than that of

P_y. Figure 3.2-21 shows the additive uncertainty A = P,,_/P,,,, for this case. It is well

to point out that both figures 3.2-20 and 3.2.21 show that error values due to the unfitted

3rd and 5th modes are small relative to that of the fitted modes. The overall modelling

error is actually dominated by that of the fitted modes. Figure 3.2-21 also shows that as

the 1st mode was being fitted, appreciable reduction of A values at around 0.1 Hz occurs.

The maximum value for A is 11.7 db for this case.
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The curve fitted model of 3 modes represents an appreciable improvement over that

of 2 modes. Accordingly, curve fitting is to be performed for the assumed modal order

of 4. Figure 3.2-22 shows the sequence of computations until convergence of the model

estimates assuming a system modal order of 4. As for the case of curve fitting 3 modes,

the 1st mode emerges gradually in later computations. The additional curve fitted mode

briefly modelled the 5th mode in the first few computations and then drifted to the low

end of the spectrum. The convergent curve fitting model is shown in figure 3.2-23. The

additional curve fitted mode appears as a spike near the peak of the 2nd mode. The output

error e = V - Y"and the additive uncertainty A are shown in figure 3.2-24 and 3.2.25. As

compared to figure 3.2-19, the output error e here shows an component around 0.7 Hz

which resulted from the additional curve fitted mode. Similarly, the additive uncertainty

shows that the additional curve fitted mode causes increased error around that frequency,

and results in a maximum value of roughly 20 db for A. As such, the curve fitted model

of assumed modal order of 4 did not show appreciable improvement over that of 3. The

automated identification procedures thus adopted the curve fitted model of assumed modal

order of 3 as the identified parametric model for the system.

It may appear puzzling that the automated procedures manage to yield an identified

parametric model of only 3 modes while 5 modes were apparent from the transfer

function spectral estimate. To make sense out of this, notice that most of the modelling

errors as reflected by Pee and A are due mainly to the low frequency modes. For the case

of curve fitting 3 modes, the peak values of A corresponding to the 1st and 2nd modes are

both around 11 db, while that for the two unfitted modes are approximately 5 and -5 db.

This explains why, in the event of curve fitting 4 modes, the additional curve fitted mode

gradually moves to the low end of the spectrum: the algorithm is attempting to achieve

a better fit of the low frequency modes. The algorithm will not attempt to curve fit the

previously unfitted modes as doing so does not effectively improve the fitting performance.

In this sense, the identified parametric model constitutes a "reduced-order" model of the

system determined according to the curve fitting accuracy of the algorithms.

3.2.2.2 The 4-10 Axis -- Hub Actuator/Hub sensor

This section presents the wideband excitation experiments about the 4-10 axis. The

corresponding hub torquer HA1 and hub angular sensor HS10 were used for instrumen-

tation. The automated identification procedures as depicted in figure 3.9.-1 were applied.

Only the most pertinent results are presented here as the identification process was detailed

and demonstrated. In section 1.3.7, the finite element model yielded slightly different fre-

quencies for the 1-7 and 4-10 axis because of the non-symmetry of the hub. This is to be

studied here via comparing experiment results for the axes.

For better comparison with previous results, the experiment utilized as wideband

excitation input the same u as for the 1-7 axis depicted in figure 3.2-2. The response y

is shown in figure 3.2-26 and 3.2.27 for the time spans of 200 sec and 40 sec, respectively.

It exhibits an appreciable difference in excursion aanplitude compared to that of figure

3.2-3 and 3.2.4. Slight differences in frequencies and phases are also noticed. More detail

is observed through frequency domain analysis. The power spectral density of y, Pry, is

shown in figure 3.2-28. It shows general similarity with that of the 1-7 axis except that the
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resonance peak corresponding to the 2nd mode now sits at roughly 40 db as compared to

35 db before. Peak values for other modes are approximately the same. Higher excursion

amplitude exhibited here is thus due mainly to the larger component of the dominant 2nd

mode. This could not have been caused by a scaling difference in the hub actuators. The

gain and phase of the transfer function spectral estimate h = Puy/Puu are presented in

figure 3.2-29. Again, it is similar to that of figure 3.2-9 except that the 2nd mode exhibits

a slightly higher peak.

Figure 3.2-30 plots the PMM determinant values as a function of the model order. The

PMM test result is quite similar to that of the 1-7 axis. It is obtained using the algorithm

PMMDE. A representative time history of the noise as observed at the hub sensor HS10

is shown in figure 3.2-31. Same as for the 1-7 axis, the PMM test yields a model order

estimate of 4 for this axis with the 0.1% criterion.

The automated identification procedures were applied as before with similar results:

curve fitting and output error analysis were performed for the assumed modal orders of 2,

3, and 4. Output error analysis results were compared. As no appreciable improvement in

modelling performance was observed for the cases of curve fitting 3 and 4 modes, the curve

fitted model of 3 modes was adopted as the identified parametric model. In the following,

only the pertinent 3 mode curve fitting result is presented.

Figure 3.2-32 shows the sequence of curve fitting computations performed on the

TFSE h. Again, the first computation used ,.qF = 1.0 for equal weighting. Subsequent

computations used SF = 0.9, and implicitly emphasized lower frequency spectral data.

At convergence, the modal parameters varied by less than 0.3%. Figure 3.2-33 shows the

gain and phase of the curve fitted model and modal data. The identified frequencies and

damping coefficients are 0.114 Hz, 0.637 Hz, and 2.57 Hz, and 0.4, 0.0364, and 0.00604,

respectively. These values confirm the slight nonsymmetry of the two axes. The 1st mode

differs by 10% in frequency value and is 25% more damped here than the other axis. The

2nd mode modal frequency differs by 5% but is 40% less damped here. This accounts

for the higher Pry peak and hence stronger response of the mode, constituting the major

difference in dynamics response of the two axis. The 3rd mode differs in frequency by 4%

and is 20% less damped than the other axis. Table 3.2.1 tabulates the modal frequency

values of the 1st, 2nd, and 4th modes for the two axes as determined from finite element

modelling method and experiment results. The two sets of results agree exceptionally well

for the 4th mode and resonably well for the others. In general, the experimental results

confirm that the 4-10 axis have smaller frequency values than the 1-7 axis.

Figure 3.2-34 shows the computed output _ of the identified parametric mode sub-

jected to the actual input u. The error e = y-_is shown in figure 3.2-35. It has comparable

amplitude as that for the 1-7 axis even though the output y here has a larger excursion

amplitude. The power spectral density of e, Pee, is given in figure 3.2-36. Compared with

Pry, it shows a 20 db drop of power in the 1st modal component and a 30 db drop in

the 2nd and 4th modal components. This indicates that the dominant modal dynamics of

the system are being well approximated. The modelling performance here is roughly the

same as that of the 1-7 axis. The additive uncertainty A = P,,_/Pu,, is shown in figure

3.2-37. The maximum gain value, which is adopted as the overall characterization of the
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modelling performance, is 11.38 db, nearly the same as the 1-7 axis. Again, the 3rd and

5th modes, apparent in figure 3.2-29, are not fitted here. The PSD P** and additive un-

certainty P_,,/Puu both show that modelling error resulted from these unfitted modes are

small compared to that from curve fitting the 1st and 2nd modes. As such, curve fitting

assuming a modal order of 4 results in the additional curve fitted mode gradually drifting

to low frequency spectrum for better fitting in that region. Such observations are the same
as the 1-7 axis.

As a conclusion, the identification results for the two axes agree reasonably with finite

element predictions. Experimental results for the two axis agreed to within 4 - 10% for

modal frequency values. Compared to the 1-7 axis, the damping coefficient for the 1st mode

of the 4-10 axis is 20% more damped, and those for the 2nd and 4th mode are respectively

20% to 25% less damped. A stronger response in the 2nd mode dynamics is therefore

effected for the 4-10 axis. These differences characterized the slight non-symmetry of the
two axes.

3.2.2.3 The 4-10 Axis -- Hub Actuator/Levitator Sensor

The experiment of the previous section is repeated except that instead of using the

hub angular sensor data, observations from the outer levitator sensor on rib_l, LO1, were

examined. The previous section served to characterize the testbed structure via observing

at the hub position of the orthogonal axis. This section tends to characterize the structure

via observing at the hub and the outer rib levitator position for the same axis. Again,

as the identification procedure has been discussed, only the most relevant identification
results are shown here.

The input of this experiment is the same as that of the previous section which is as

shown in figure 3.2-2. Figure 3.2-38 and 3.2.39 show the time histories of the levitator

output y for 200 sec and 40 sec. They clearly lack the higher frequency components as

compared to the hub sensor data in figure 3.2-26 and 3.2.27. This is further illustrated in

figure 3.2-40 which shows the PSD of y and Figure 3.2-41 which shows the gain and phase of

the TFSE Puy/P,u. Unlike the hub observations, the 1st mode is now the most dominant,

followed by the 2nd mode. The higher frequency modes are greatly diminished. The fact

that levitator sensors are not effective in observing higher frequency modes is expected. As

a result of the levitator counterweights, nodal points of structural modes tend to be located

close to the levitating positions, making the levitator sensors less effective, especially in

observing high frequency modes. The PMM test results are shown in figure 3.2-42. As

there is zero noise observed for the sensor, the results were generated using the algorithm

PMMD with SIGPMM=0.0. The PMM test results indicate an approximate model order
of 3 with the 0.1% criterion.

The automated procedure thus calls for curve fitting with an initial model order of 2,

and then 3, and so on. No improvement in modelling performance was observed for the

curve fit models of assumed modal orders 2 and 3. The curve fitted model of 2 modes

was thus adopted as the identified parametric model for this case. Such results are no

!surprise as Puy/Pu,, in figure 3.2-41 shows that the 1st and 2nd modes are appreciably
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Table 3.2-1

Comparison of Finite Element Modelling (FEM) and

Experiment Results for Boom-Dish Modal Frequencies.

Mode

Number

The 1-7 Axis The 4-10 Axis

FEM

Result

Experiment FEM Experiment

Result Result Result

0.091 0.126 0.091 0.114

0.628 0.666 0.616 0.637

2.682 2.68 2.577 2.57
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more dominant over the rest. Curve fitting the high frequency modes in the present case

would not efficiently improve the identification performance which is dominated by the
fitting error of the 1st and 2nd modes.

Curve fitting results assuming a modal order of 2 are now presented. Figure 3.2-43

shows the sequence of computations of the system model transfer function estimates. As

before, the 1st mode came into prominence gradually during later computations emphasiz-

ing low frequency spectral data. At convergence, subsequent frequency values and damping

coefficients vary less than 0.3%. Figure 3.2-44 shows the transfer function of the converged
curve fitted model.

The computed output _"of the identified parametric model subject to the same input is

given in figure 3.2-45 and e = y-_is given in figure 3.2-46. Pee, the spectral density of e, is

shown in figure 3.2-47. The seemingly larger output error for the present case is dominated

by the fitting error of the 1st mode. The fl'equency resolution adopted for present analysis

was around 0.01 Hz, roughly 10% of the frequency of the 1st mode. Hence, out of the

1024 spectral data points of P,_y/Pu,,, there were only twenty or so corresponding to the

1st mode. This caused difficulties in curve fitting the 1st mode. The present identification

procedures utilized a non-uniform weighting emphasizing the low frequency spectral region

to achieve curve fitting this 1st mode. Unavoidably, appreciable fitting error for the 1st

mode was induced in the process. It is important to point out that appreciable fitting

error for the 1st mode was similarly induced for previous hub angular sensor cases, except

that here it is much more apparent as the 1st mode was the most dominating component

in the levitator sensor output.

The additive uncertainty, estimated by A = P_e/Pu,_, is shown in figure 3.2-48. Errors

corresponding to the 1st mode contributed the maximum value of P_,_/P_u at 16 db. The

identified modes were of fl'equencies 0.134 Hz and 0.637 Hz and of damping coefficients

0.39 and 0.041. Compared with the identified parametric modes of section 3.2.3, the results

showed a reasonable match of frequency and damping values except for the frequency of

the 1st mode which is 20% off. This is probably due to the appreciable curve fitting error

for the 1st mode in the two cases. Also, the relatively large damping coefficient gave

rise for this mode a flat resonance in the transfer function. This contributed further to a

possible mismatch of the spectral data and curve fit. As a final note, the unfitted modes

contributed smaller curve fitting errors than those due to the fitting of the 1st and 2nd

modes, which was why the algorithms avoided fitting them in the first place.

3.2.3 Narrowband Excitation (0-3 Hz)

In this and the next section, the techniques of narrowband excitation and data com-

position are presented. Worldng together, these techniques allowed data from different

spectral region of interest to be generated and combined for analysis. The narrowband

excitation technique is presented first. As was discussed before, narrowband excitation

concentrated the available actuation power for structural excitation within a narrow spec-

tral range, leading to an improvement in signal to noise ratio in the observations and hence,

better curve fitting results. This is useful when only a narrow range of frequency spectrum

is of interest or when attempts are being made to enable excitation of otherwise difficult-
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to-excite mode(s). As an example to demonstrate the technique, this section describes a

narrowband experiment and its identification results. The frequency range of interest is

from 0 to 3 Hz. The experiment was performed on the 4-10 axis of the structure using the

hub torquer HA1 and hub angular sensor HS10, the same axis and instrumentation as in

section 3.2.2.2. The 0-3 Hz filter was designed based on the following parameters:

ITYPE=I ( low Pass )

IAPRO=I ( Butterworth )
NDEG=12

EDEG=0.2

FR(1)=3.0

FR(2)--3.5
ADELP=0.02

ADELS=0.01

NBFIL=I.0

As such, the low pass filter has a transfer function magnitude which starts to roll off

at 3 Hz, arriving at cutoff at 3.5 Hz. The filter coefficients are stored as the first filter

coefficient storage file 'filcoel.dat'. The parameters Fr(3) and Fr(4) are irrelevant as the

filter is a lowpass one.

The parameters set for the narrowband experiment were WBMEAN-0.0 and WB-

STAN=I.5, which were the same as for the previous wideband experiments. The other

parameters were PER=66.7 and NBFIL=I.0. NBFIL--1.0 implied reading in the filter co-

efficients from the first storage file which is where the intend filter was stored. PER=66.7

dictated that the narrowband experiment utilized 66.7% of the actuation energy in the

wideband case. This value of PER ensured that the hub torquer not be commanded for

actuation beyond its maximum power. Compared with the wideband experiment, the

present narrowband experiment thus concentrated 66.7% of the actuation power into a

30% (0-3 Hz out of 10 Hz ) of the full range. This amounted to a factor of 2 increase in

excitation power density.

Figure 3.2-49 and 3.2.50, respectively, present the 200 sec time histories of the narrow-

band experiment input u and output y. The autocorrelation of u at zero lag, R,,u(0), was

determined to be 0.509 for this case, while it was 0.75 before for the wideband excitation

case. As Ru_(0) is a measure of the total integrated power of the spectrum, it confirmed

the fact that only 66.7% of actuation power in the wideband experiment was used for this

experiment. The PSD of u, Puu, is given in figure 3.2-51. It showed a drastic rolloff of

input power at 3 Hz, indicating clearly that the filter design and implementation were as

desired. The PSD of y, Pyy, is given in figure 3.2-52. Compared with figure 3.2-28, it
indicated enhanced structural excitation over that of the wideband excitation case within

the range of 0-3 Hz, as expected. The component of the 5th mode which is around 5 Hz

is missing in Pyy, also as expected. Figure 3.2-53 shows the TFSE P,,y/Pu,,. Only the

data within the range 0-3 Hz constituted meaningful results in figure 3.2-53. Outside the

range, noise dominated as there was very little input and output energy there. Figure

3.2-54 presents the PMM test results obtained using algorithm PMMDE. The estimated

model order is 3 according to the 0.1% criterion.
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To see if better identification results could be obtained, the automated procedures

depicted in figure 3.2-1 were applied as before, except that this time spectral data within

the range 0-3 Hz were being utilized for curve fitting. The final identified parametric
model is the one with an assumed modal order of 3. This identified modal order of 3

is not surpising as the difference between the present case and the wideband case is the

absence of the 5th mode which is a mode that did not show up in curve fitting anyway.

Figure 3.2-55 shows the sequence of curve fit computations. Convergence was reached

after 5 computations and subsequent modal values agreed to within 0.1%. Again, the first

computation utilized SF=I.0 for equal weighting while the rest used SF=0.9. All the time

only the 0-3 Hz spectral data was processed. The 1st mode, as before, gradually came into

being during later computations. Figure 3.2-56 shows the identified parametric model.

Figure 3.2-57 shows the output error e = y - if, where _" is the identified parametric model

output subjected to the same input u depicted in figure 3.2-49. The additive uncertainty, A,

is given in fig 3.2.58. The output error analysis here of e and A did not show any observable

improvement as compared to that of the wideband excitation. It seems that the wideband

excitation output already enjoyed a good signal to noise ratio so that a further increase by

a factor of 2, in this case, did not bring about any noticeable improvement. However, the

technique of narrowband excitation capability incorporated here in the experiment software

can constitute, in other circumstances, a good method of reducing the measurement noise.

3.2.4 Data Composition

Due to the finite power constraint on the actuator, the obtainable power density and

frequency range of excitation are inversely proportional to each other. This section presents

a technique called data composition which effectuates, after conducting several narrowband

experiments covering different frequency ranges of interest, the summation of their inputs

and outputs. The results would be the data of an 'effective' experiment of which the

frequency range of excitation is the sum of the individual narrowband experiments. As

such, an experiment of high excitation power density as well as wide frequency range can

be achieved.

The technique of data composition is illustrated in this section. Data from narrowband

experiments of frequency range 0-3 Hz and 3-6 Hz are added together to form that of

one with 0-6 Hz as an effective frequency range of excitation. The data for the 0-3 Hz

narrowband experiment are the same as that presented in the previous section. Data

for the 3-6 Hz narrowband experiment are now presented. Consistent with the 0-3 Hz

narrowband experiment, this 3-6 Hz narrowband experiment was performed on the same

4-10 axis and utilized the same hub actuator HA1 and sensor HS10. The filter parameters

were:

ITYPE=333 ( Band Pass )

IAPRO=I ( Butterworth )
NDEG=12

EDEG=0.2

FR(1)=2.5

FR(2)=3.0
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FR(3)=6.0

FR(4)=6.5
ADELP--0.02

ADELS-0.01

IFIL--2.0

The band pass filter has its pass band located between 3 and 6 Hz, with cutoff fre-

quency at 2.5 and 6.5 Hz. As the parameter IFIL shows, the filter coefficients were stored

in the second filter coefficient storage file 'filcoe2.dat'. The parameters for this 3-6 Hz nar-

rowband experiment were WBMEAN=0.0, WBSTAN=I.5, PER=66.7, and NBFIL=2.0.

Note that they are the same as the 0-3 Hz narrowband experiment, except that NBFIL now

dictated the filter coefficients be read from the second filter coefficient storage location.

As compared to wideband excitation, this experiment used 66.7% of the actuation power

in 30% of the frequency range for excitation, yielding a factor of 2 increase in excitation

power density. This is the same as for 0-3 Hz narrowband experiment. Again, PER=66.7

ensured that the torquer was not commanded beyond its maximum output.

The input and output of the 3-6 Hz narrowband experiment are given in figure 3.2.59

and 3.2.60 for the time span of 20 sec which enabled better appreciation of the frequency

components in u and y. The maximum excursion of the output in figure 3.2-60 is approx-

imately 20 times smaller than that of the 0-3 Hz narrowband experiment in figure 3.2-50.

This shows the dominant presence of 0-3 Hz component over the 3-6 Hz component in the

structure dynamics. The PSDs of u and y, Puu and Pyy, are given in figure 3.2-61 and

3.2.62. The PSD Puu confirmed the validity in the design and implementation of the filter.

The integrated spectral power of P_u as indicated by Ruu(O) is computed to be 0.508, again

confirmed that 66.7% of the actuation power as in the wideband case was used. The PSD

Pyy showed that though the intent was to excite the 3-6 Hz component of the structure,

the first two system modes were also slightly excited because of their prominence in the

dynamics. The PSD Py_ also indicated the more apparent excitation of the 5th mode.

The strongest component in y and Pry, however, is a 3 Hz component which is due to the

residual resonance of the 4th mode around 2.6 Hz. The TFSE Puy/Puu is shown in fig.

3.2.63. Again, only the data within the pass band of 3-6 Hz are meaningful. Figure 3.2-63

clearly indicated the presence of the 5th mode around 5 Hz. The PMM test result is shown

in figure 3.2-64. It yielded an estimated model order of 2 with the 0.1% criterion.

Data composition was performed adding the inputs and outputs of the 0-3 Hz and

3-6 Hz narrowband experiments together to generate the input and output of an effective

0-6 Hz experiment run. Figures 3.2-65 and 3.2-66 show, respectively, the input and output

of data composition. Note that the maximum input command is now around 3.2 nt-m

which is beyond the maximum actuation level of 2 nt-m. Figure 3.2-67 shows the PSD

Puu. It illustrated the basic idea of data composition. The input excitation constituted

effectively that of a 0-6 Hz narrowband experiment. The little hump on Pu_ near 3 Hz

is due to the overlapping of the rolloff ranges of the narrowband filters. The integrated

spectral power of the input excitation as indicated by Ru,,(O) is computed to be 1.01.

Thus, the composed data were equivalent to concentrating 133% of the actuation power

available to the wideband experiment 60% of the full frequency range. The output is very
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similar to that of the 0-3 Hz narrowband experiment. This is because the output of the

3-6 Hz narrowband experiment is relatively small. The PSD of y, Pyy, is shown in figure

3.2-68. It indicated the presence of 5 modes, 4 from the 0-3 Hz narrowband experiment, 1

from the 3-6 Hz. The TFSE of the composed data is shown in figure 3.2-69, again showing

the presence of 5 modes. By the same reasoning as before, only the spectral data within

the 0-6 Hz range are meaningful.

The PMM test result for the composed data is shown in figure 3.2-70. It estimated

the number of states in the system to be 4. Note that the 0-3 hz narrowband experiment

alone yielded an estimated model order of 3. The added component from the 3-6 Hz

narrowband excitation managed to increase the model order estimate by 1 resulting in
the same estimated order as the wideband excitation case. The automated identification

procedures were applied to the composed data. The identified results were very similar

to the wideband experiment case. This is also expected as there had not been much

improvement with the 0-3 Hz narrowband excitation data, and there should not be any

with the addition of a not too significant mode in the data.

The methodology of data composition is illustrated in this section. In cases where

actuation is inadequate, or when narrowband excitation is more desirable for effective dy-

namics observation, data composition can effectively produce a high excitation power/wide

frequency range experiment run. Data generated from different experiments corresponding

to the same narrowband excitation can also be composed together to enhance the signal

to noise ratio.

3.3 Investigation of The Residual Modes

A 3 mode identified model was obtained based on the automated identification pro-

cedures as depicted in figure 3.2-1. Two other modes, termed the 3rd and 5th mode,

were apparent in the spectral transfer function but did not appear during curve fitting

computations. The reason is that they are "weak" as compared to others. The resulting

identification error due to their omission was found to be small compared to the curve

fitting error of the three major modes. Hence, for better performance the algorithm would

rather attempt to better fit the major modes than to accommodate curve fitting the "weak"

modes. As such, the automated identification procedure yields a "reduced-order" model

based on the curve fitting performance of the algorithms. Using conventional terminology,
modes that were not included in the "reduced-order" model are termed residual modes in

contrast to retained modes for those included in the "reduced-order" model.

This section examines the residual modes which, in the present case, are the 3rd

and 5th modes. Two methods were used for this investigation. The first, described in

section 3.3.1, involves performing curve fitting computations on selected frequency ranges

that correspond to residual modes. It yielded frequencies and damping coefficients for

the residual modes. The second is the sine-dwell methodology described in section 3.3.2.

It excites a particular residual mode via sinusoidal inputs. It should be pointed out that

both methods can also be.applied to the investigations of modes which appear during curve

fitting computations. However, here they are devoted to investigating the residual modes.

It is hoped that information on the residual modes adding to the "reduced-order" model
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will enable a better understanding of the model structure. All experiments described in

this section were performed about the 4-10 axis with the hub actuator HA1 and angular

sensor HS10.

3.3.1 Selective Range For Curve Fitting

The identification software developed has the capability to perform curve fitting using

the spectral data of a selected frequency range. In such cases, even weighting, SF=I.0, has

to be adopted. The technique here is to select the range of frequency for curve fitting close

to the residual modal frequency. A narrow range about the resonance frequency of the

residual mode is desired as such selection minimizes the effects of the major modes. This

section utilizes narrowband excitation data for demonstration. They in general constitute

a better signal to noise ratio though in the present case, selected data from wideband

excitation data could be used as the noise level is small anyway.

The first residual mode to be investigated is the 3rd mode. It has a resonant frequency

of roughly 1.7 Hz as indicated by the spectral transfer function obtained via 0-3 Hz narrow-

band excitation and depicted in figure 3.2-53. Three ranges were selected for curve fitting

computations. The first was from 1.5 to 2.0 Hz. The curve fitting results showed a modal

frequency of 1.719 Hz and a damping coefficient of 0.00515. A narrower second frequency

range based on this information was then selected: 1.6 to 1.8 Hz. Curve fitting yielded a

1.718 Hz modal frequency with 0.0104 damping coefficient. To see if the spillover effect

of the other modes has already been minimized to the limit, a third even narrower range

of 1.65 to 1.75 Hz was selected for confirmation. The curve fitting computation yielded

almost identical results of 1.718 Hz modal frequency and 0.01024 damping coefficient.

The curve fitted models consisting of the 3rd mode are presented in figure 3.3-1 for

the three selected ranges. The phase plot is given for the third selected range only. To see

how well this mode was fitted, output error analysis was performed. Figure 3.3-2 shows

the time history of the computed output _" of the curve fitted model corresponding to the

third selected range subjected to the same input as in the narrowband experiment. It has

a maximum excursion of approximately 0.4, as compared to roughly 15 for y. Contribution

from the major modes to y dominated over that of the 3rd mode. The error e = y - _ is

shown in figure 3.3-3. Not surprisingly, e is very similar to y as _" is small relatively. The

PSD of e, P_, is shown in figure 3.3-4. The corresponding TFSE, A = P,,_/P,,,,, is given

in figure 3.3-5. Three observations should be noted from these figures: First, the modelling

of the first residual mode, or the 3rd mode, at around 1.7 Hz was quite adequate as P,_

and A both show that the corresponding modal component is being taken out. Second, e,

composed mainly of modal components of the 1st, 2nd, and 4th modes, has a maximum

excursion of approximately 15 and _, which approximated the modal component of the 3rd

mode, has a maximum displacement of around 0.4. This illustrated the relative weakness

of the 3rd mode. Also, the resultant e in the 0-3 Hz naxrowband excitation case as given

in fig. 3.2.57 has a maximum error of 2.6, it is thus likely that the 3rd mode, of around

0.4 maximum excursion at full strength, would not show up in the "reduced-order" model.

Finally, the present results indicated that curve fitting computations based on selected

spectral data managed quite adequately to extract relevant information concerning the
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residual mode.

The second residual mode to be investigated is the 5th mode at around 5 Hz. Spectral

data were selected from a narrowband experiment having a band pass of 3-6 Hz. It should

be noted that data from a different 3-6 Hz narrowband experiment than t'he one presented

in section 3.2.3 was utilized here. The present data run still used a 20 I-Iz sampling fre-

quency but lasted only 409.6 sec., with a total of 8192 input and output data recorded.

It utilized a different set of parameters for its spectral estimation analysis. The reason is

that for investigation of a mode at approximately 5 I-Iz, the frequency resolution required

can be more relaxed than that of investigating a, say, 0.1 Hz mode. Previous experiments

adopted a run time of 1638.4 sec. as dictated by the desired resolution for the 1st mode

at 0.1 Hz. Here, a shorter run time can be afforded. The spectral estimation parameter

was accordingly set as: MSE=512, NSE=8192, LSE=256, and NFFT=512. Detail dis-

cussion concerning the selection of spectral estimation parameters will be given in section

3.5.1. The instrumentation and other parameters set for the presently adopted 3-6 Hz

narrowband experiment was the same as that before: hub torquer HA1 , hub sensor HS10,

WBMEAN=0.0, WBSTAN=I.5, PER=66.7, and NBFIL=2.0.

Figures 3.3-6 and 3.3-7 show the 20 sec time histories of the input and output of the

3-6 Hz narrowband experiment. Maximum excursion of y is around 0.6. Figures 3.3-8 and

3.3-9 show the input and output PSDs. The input PSD Puu confirms that the excitation

was composed of frequency components between 3-6 Hz. The output PSD Pyy shows

• that though y apparently has an approximate 5 Hz modal component, the most dominant

component is around 3 Hz which is actually due to the residual resonance of the 4th mode

at 2.67 Hz. This is the same as the previous 3-6 Hz experiment described in section 3.2.4.

The TFSE Puv/P,_,_ is shown in figure 3.3-10. As for the narrowband experiment before,

only the data within the passband is meaningful. From figure 3.3-10, the second residual

mode, or the 5th mode, is apparent. Figure 3.3-11 shows the results of performing curve

fitting on the spectral data of three selected ranges. The first ranged from 4 Hz to 5.5

Hz, yielding a frequency of 4.99 Hz and damping coefficient of 0.0043. Based on this, the

second range is chosen to be from 4.5 Hz to 5.5 Hz, yielding a frequency of 5.033 Hz and a

damping coefficient of 0.0066. The third range really narrowed down to eliminate as much

as possible the residual effect of other major modes. It ranged from 4.8 Hz to 5.2 Hz and

yielded a frequency of 5.03 Hz and a damping coefficient of 0.00562. Transfer functions for

the curve fitted models are given in figure 3.3-11 for the selected ranges, with the phase

plot included only for the third range. Several figures are given to illustrate the modelling

performance. Figure 3.3-12 shows the computed output _ subjected to the same input

u as in figure 3.3-6 for the 4.8-5.2 Hz selected range curve fitted model. Figure 3.3-13

shows the corresponding PSD P** of the output error e = y - _. Figure 3.3-14 shows

the additive uncertainty A. Both P,e and A show elimination of the mode component

at around 5 Hz, indicating that identification of the residual mode has been satisfactory.

_" has an amplitude of approximately 0.05, small compared with y of figure 3.3-7 which

consisted mainly of the tail end of the 4th mode component. _" is even smaller compared

to the combined effect of the 3 major modes which, as discussed before, summed up to

a maximum excursion of the order of 15. Again, knowing the fact that fitting only the

major modes would already generate an output error e of approximately 2.6 in amplitude,
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it is understandable that the 5th mode did not show up in the curve fitting computations

along with others.

The present section has demonstrated the capability of the experiment software to

perform curve fitting on spectral data of selected ranges. It yields modal information of the

two residual modes which are the 3rd and 5th system mode. As illustrated by output error

analysis, the curve fitted results seemed to be quite adequate. In the next section, input

frequency for the sine-dwell investigation of the residual modes will be selected based on this

modal information. Understanding of why the residual modes did not show up in previous

curve fitting computations with the major modes was also discussed here. As a final

note, though it may be possible to incorporate the residual modal data into the identified

"reduced-order" model, this would not help to improve the modelling performance of the

identified parametric model. The modelling performance is dictated by the output error,

e or A = P_,_/Pu_, which depended heavily on the major modes.

3.3.2 Sine-Dwell Investigation

The previous section obtained modal data of the residual mode by curve fitting spectral

transfer function data of selected frequency ranges. The residual modes were not physically

excited and observed. The first residual mode was not observed from the output of the

0-3 Hz narrowband experiment as it was overshadowed by the presence of the three other

major modes. Even for the narrowband experiment of 3-6 Hz, within which there lies only

the second residual mode at around 5 Hz, the residual modal component was obscured

by a 3 Hz component which was the tail end of the 4th mode at 2.67 Hz. It would seem

that to clearly excite a residual mode, a very narrow filter properly set at the residual

modal frcquency would have to be used. Sine-dwell excitation is just such a filter carried

to the limit. It utilizes the full force of the actuator to implement a sinusoidal input at a

particular frequency. By scanning the sine-dwell frequency through a narrow range about

the plausible residual modal frequency, resonance should occur at certain frequency which

can be associated with the residual mode. In addition, by forcing the sinusoidal inputs until

steady state is established, real and imaginary parts of the system transfer fucntion at that

frequency can be computed, stored, and processed for curve fitting. As such, excitation of

the residual mode can be physically observed and the residual modal information can be

generated.

The sine-dwell investigation of the first residual mode, i.e., the 3rd system mode, is

presented here. The sine-dwell parameter SAMP and TGRIM were set to be 2 nt-m and

10 sec, respectively. They reflected that the maximum actuation level of 2 nt-m and an

averaging time of 10 sec are being used for the experiment. Results from previous sections

indicated a frequency of approximately 1.7 Hz for this residual mode. The parameter

TGRIM=10 sec thus amounted to roughly 17 cycles of modal oscillation and should be

adequate for averaging. The other unassigned parameter SDFREQ which is the frequency

of the sinusiodal input excitation, would take on values around 1.7 Hz. The sampling

frequency was kept at 20 Hz. The total experiment run time is 200 sec which amounted

to 340 cyles of the residual mode. Given the anticipated damping coefficient of the mode,

this should be long enough to achieve steady state dynamics.
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The following figures present data for the sine-dwell run of 1.7 Hz input excitation, i.e.

SDFREQ=I.7 Hz. Figure 3.3-15 shows the sine-dwell input for 20 sec. Figures 3.3-16 and

3.3.17 show the time histories of the output for 200 sec and 50 sec, respectively. Figure 3.3-

16 shows that steady state has indeed been reached. Figure 3.3-17 reveals the frequency

content of the approximately 1.7 Hz component in the output. Table 3.3.1 shows the real

and imaginary parts of the system transfer function as computed for the last 100 sec of

the run. The values vary very little, again confirming that steady state has been achieved.

Figure 3.3-18 compares the 200 sec time histories of the sine-dwell experiment outputs at

input frequencies of 1.66 Hz, 1.68 Hz, 1.69 Hz, 1.70 Hz, 1.71 Hz, 1.72 Hz, and 1.74 Hz. It

clearly shows a maximum output amplitude at 1.7 Hz input frequency, indicating modal

resonance. The modal frequency of this residual mode must therefore be quite close to

1.7 Hz, a fact consistent with previous analysis. Table 3.3.2 listed the input sine-dwell

frequencies and corresponding real and imaginary parts of the system transfer function.

The phases of the transfer function as computed from the real and imaginary parts are also

given. At around modal resonance of 1.7 Hz, the phase is roughly -155 degrees. The phase

would have been + or -90 degrees had this been the only mode in the system. However,

this is not the case and so the residual effect of other modes contributed to the phase value.

Another observation fl'om Table 3.3:9. is that the phase drops abruptly by a large amount

close to 1.7 Hz, again indicating modal resonance around that frequency.

In practice, frequency selection of sine-dwell investigation is based on knowledge ob-

tained through full range or selected range spectral transfer function curve fitting. Even
so, it is not likely that the sine-dwell inpu_ frequency will be exactly on the structural

modal frequency, as only so many sine-dwell experiments can be performed. One way to

enable better modal identification is to implement a search routine stepping towards the

frequency with the largest gain of the computed transfer function, counting that residual

effects of other modes on the gain are minimal. Note that the frequency resolution for

sine-dwell investigation, however, is dictated by the reciprocal of the experiment run time

and the signal to noise level.

Another way to obtain more detail modal data via sine-dwell investigation is to per-

form curve fitting on the real and imaginary" parts of the computed system transfer function.

This capability was built into the present experiment software. The data in Table 3.3. 9

were put into a sine-dwell data file from which they were read and processed by the curve

fitting algorithm. The results are as given in figure 3.3-19 which presents the transfer

function gain and phase of the curve fitted model. The frequency and damping coefficient

of this first residual mode are determined to be 1.702 Hz and 0.00571. This is reasonably

close to the values of 1.718 Hz and 0.0109.4 as identified for this mode in the previous

section.

Maximum actuation level SAMP=2 nt-m is again set for the sine-dwell investigation

of the second residual mode which is the 5th system mode. Other parameters were set as

according to the fact that previous analysis pointed to a modal frequency of around 5 Hz

for this mode. The averaging time TGRIM was set at 5 sec which amounted to averaging

approximately 10 cycles of oscillations. The experiment run time remained at 900 sec to

ensure steady state dynamics. Instead of 20 Hz, the sampling frequency was increased to

30 Hz, the reason being that generation of a 5 Hz sinusoidal input with a 20 Hz sampling
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TABLE 3.3-1

Computed Real and Imaginary Parts of System Transfer

Function For Sine-Dwell Investigation of The 3rd Mode

Time (sec) Real Part Imaginary Part

I00 -2.05414 -0.83419

ii0 -2.02237 -0.88742

120 -2.00977 -0.89982

130 -2.05409 -0.81231

140 -2.04397 -0.84610

150 -2.01537 -0.89309

160 -2.00668 -0.90468

170 -2.05053 -0.81733

180 -2.03962 -0.85687

190 -2.01274 -0.90788

200 -2.00255 -0.91835

Sine-dwell

Freq (Hz)

1 66

1 68

1 69

1 70

1 71

1 72

1 74

TABLE 3.3.2

System Transfer Function Computed at

Different Sine-Dwell Input Frequency

Real Part Imaginary Part

-0 164613

-0 669877

-i 271916

-2 006244

-i 184758

-0 544025

-0 219744

-0.587671

-1.232019

-1.425530

-0.924542

1.474806

1.165272

0.753130

Phase

(degrees)

-105 65

-118 53

-131 74

-155 26

-231 22

-244 97

-253 73
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period would amount to a representation of only 4 data points per cycle which is clearly

not adequate. At 30 Hz sampling frequency, the representation is better though not the

best with 6 data points per cycle. Figure 3.3-20 shows the 10 sec time history of a 5 Hz

sinusoidal input represented under a sampling frequency of 30 Hz. The input excitation

did not reach the maximum amplitude of 2 nt-m because of the limited number of available

data points. However, in order to leave adequate time for the execution of the experiment

software, a higher sampling frequency is not sought. Figure 3.3-21, 3.3-22, and 3.3-23 show

the results of the investigation at 5 Hz sine-dwell input frequency. They respectively show

the 133 sec, 50 sec, and 20 sec time histories of the hub angular sensor subjected to a 5

Hz sinusoidal input. The figures indicated a large component of the 2rid system mode at

around 0.64 Hz. Step representation of sinusoidal input as in this case inherently induced

excitation of other modes in the structure and the 2nd system mode is the strongest among

them. Besides the 2nd mode, however, the figures, especially figure 3.3-23, indeed indicated

excitation of an approximately 5 hz mode. Presence of the 2nd modal component did not

affect the calculation of the real and imaginary part of the system transfer function. This

is because during the computation, only the components close the sinusoidal input

frequency which is 5 Hz are being correlated to yield the results. Representations of these

results for the last 66.7 sec of the experiment run are given in Table 3.3.3. They show

reasonably steady state results. Figure 3.3-24 compares the 50 sec time histories of the

hub sensor outputs for the sinusoidal investigations at input frequencies of 4.9 Hz, 4.95

Hz, 5 Hz, 5.05 Hz, and 5.1 Hz. It is visualized that, taking out the approximate 0.64

Hz component, modal resonance would occur at close to 5 Hz, consistent with previous

analysis. Table 3.3.4 listed the computed real and imaginary parts of the system transfer

function at different input frequencies. The phases are also included. Roughly, the phase

goes from 156, 172, 70, 20, and 10 degrees, again showing a steep drop at around 5 Hz

which indicated possible modal resonance. As for the first residual mode, more detailed

modal information of the residual mode under investigation was obtained by curve fitting

the data as listed in Table 3.3.4. Figure 3.3-25 shows the gain and phase of the identified

model as obtained. The modal frequency is determined to be 4.99 Hz while the damping

coefficient is 0.003. They are compared reasonably to the values of 5.029 Hz and 0.0056

that were determined in previous section.

3.4 Nonlinearity Investigation

This section describes the nonlinearity investigation of the structure via wideband

and sine-dwell excitations. As is, the structure allows a maximum of +5 cm excursion on

the ribs and +2 degree rotation on the hub. If nothing else, this will be the high bound

of system linearity. Care was taken to avoid exciting the structure beyond these limits

during experimentation to avoid causing any damage. In case of small excursions, effects

of stiction, hysteresis, etc., are expected to come in and again make the system nonlinear.

High and low bounds of linearity for the system are therefore expected. The existing finite

element model of the structure generally assumed a linear range of roughly +2 cm for the

rib tip and +1 degree for the hub angle with zero excursion low limit. Here, attempts were

made to infer this linear range from experiments. All experiments in this section were

performed about the Rib4/Ribl0 axis with the hub actuator HA1.
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TABLE 3.3-3

Computed Real and Imaginary Parts of System Transfer

Function For Sine-Dwell Investigation of The 5th Mode

Time (sec) Real Part Imaginary Part

133 3

140 0

146 7

153 3

160 0

166 7

173.3

180.0

186.7

193.3

200.0

0.19971

0.22797

0.21305

0.20188

0.19861

0.21494

0.19941

0.22970

0,_21799

0.19996

0.19424

0.51614

0 49368

0 50273

0 49462

0 49020

0 51424

0 51791

0 49640

0.50005

0.49445

0.48952

Sine-dwell

Freq (Hz)

TABLE 3.3.4

System Transfer Function Computed at

Different Sine-Dwell Input Frequency

Real Part Imaginary Part

4.90 -0.019156 0.0085858

4.95 -0.108024 0.0142690

5.00 0.181920 0.4877198

5.05 0.202054 0.0737014

5.10 0.130458 0.0218893

Phase

(degrees)

155.86

172.48

69.50

20.04

9.52
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3.4.1 Wideband Excitation Approach

In this approach, the structure was excited at different excursion levels with wideband

excitations and the output responses were observed and compared. The experiments were

performed about the 4-10 axis. The hub torquer HA1 was used for input excitation. For

output observation, three sensors were used: HS10, LI1, and LO1. They are, respectively,

the hub angular sensor of the 4-10 axis, the inner levitator sensor on rib #1, and the outer

levitator sensor on rib #1. Rib #1 is orthogonal to the 4-10 axis, structural displacements

on the rib due to torquing about the axis are very observable with these sensors. Moreover,

the outputs yield a good understanding of how modal displacement are being sensed along

the rib.

Four experiments, gradually decreasing in input command amplitudes and hence,

resultant structural excursions, were performed. The experiment run times were 40 sec. To

enable effective output comparsions, the same sequences of input commands were used for

all experiments, only that they are scaled by different constants. Thus, if the structure were

truly linear, excursions subjected to different excitations should be scaled correspondingly.

Figure 3.4-1 shows the results of the investigation. The first column presents the input

excitations of the four wideband excitations. They are the same input sequences scaled

to have maximum amplitudes of 2 nt-m, 1.5 nt-m, 1.0 nt-m, and 0.5 nt-m, respectively.

The second, third, and fourth columns show the corresponding structural excursions as

observed in sensors HS10, LI1, and LO1. Previous results had revealed that the two

modes at roughly 1.7 Hz and 5 Hz are relatively weak. This explains why only three out

of the five modes are observable by the sensors as in figure 3.4-1. Referring to fig. 1.3-5,

which shows the mode shapes of the boom-dish modes of the structure as generated by

finite element modelling method, these three modes would be most observable with the

hub angular sensor as indicated by their mode shapes. Moreover, the inner levitator sensor

LI1 would not be too effective in observing the 2.7 Hz mode as it is located close to the

nodal point of the mode. Similarly, the outer levitator sensor LO1, sitting near the nodal

points of both the 0.64 Hz and 2.7 Hz modes, would not be effective in observing these

two modes. It is also noted that, especially for experiments subjected to stronger input

excitations, the excursions as observed by the levitator sensors seem to be in the opposite

direction as that by the hub angular sensor. This is due to the adopted definition for

positive angular rotation and rib displacement in this work, and is again consistent with

the mode shape of the observed modes as given in figure 1.3-5. These observations are all

reflected in figure 3.4.1. Hence, general results from the experiments seem to validate the

mode shapes generated by the finite element structural model.

The second column in figure 3.4-1 is now considered in more detail. Three distinct

modal components are observed during experiments subjected to relatively strong excita-

tion. Comparison of the first two experiments reveals that, more or less, they are properly

scaled. This indicates that the structure as observed by the hub angular sensor indeed

behaves as a linear system at the corresponding levels of actuation and displacement. At

lower actuation level, however, the 1st modal component appears to drop out leaving only

the 2nd and 4th modal components. The structure therefore loses its linearity. However,

these two remaining modes by themselves seem to retain linearity pretty well even to the
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case of 0.5 nt-m actuation amplitude.

The third column in figure 3.4-1 shows the excursions as observed at the inner levi-

tator sensor on rib _:1. As discussed before, the 4th mode at around 2.7 Hz was not as

prominently observed here as with the hub sensor. Also, the component of the 1st mode

drops off faster at decreasing input excitation than that of the hub angular sensor. As the

input excitation amplitudes go from 2 nt-m to 1.5 nt-m, the 1st modal component seems to

decrease by a factor of 3, and almost disappears in the following experiments with smaller

excitation amplitudes. The dominant 2nd mode at around 0.64 Hz, however, seems linear

for all experiments.

The fourth column compares the responses as measured by the outer levitator sen-

sor. Again, the the 1st modal component drops off quickly at decreasing excitation. As

discussed before, there is less of the 2nd modal component in the responses and the 4th

mode around 2.7 Hz is clearly not noticeable. Due to its observability, the remaining 2nd

mode now does not seem linear at weak excitations.

Several points are to be noted from the above discussion. First, observations by the

three sensors seem to be consistent with the mode shapes of the structure as calculated

from finite element method. Second, the lowest frequency 1st mode seems to drop off

rapidly at low excitations. There seems to be a damping mechanism acting strongest on

low frequency modes. Third, the drop off rate of the 1st mode is faster for the levitator

sensor measurements, pointing to perhaps a localized damping mechanism. Fourth, more

or less, the stronger modal component of the 2nd mode retains its linearity even at small

excitation. Fifth, all told, linearity of the system depends on the sensor being utilized as

well as the levels of actuation. When using the hub sensor, the system can be regarded as

linear if the excitation amplitude ranges from 1.5 nt-m to 2 nt-m, resulting in hub angle

rotations of ranging from 7 mrad to 15 mrad.

3.4.2 Sine-Dwell Excitation Approach

Tile previous section showed that the 2nd system mode at around 0.64 Hz mode is the

strongest among all observable modes. It constitutes the most dominant component and

adheres more or less to linearity even at low excitation inputs. In this section, sine-dwell

investigation will be performed on this mode for a better understanding of its behavior in

frequency domain.

The investigation utilizes 0.63 Hz sinusoidal inputs of various amplitudes to excite

the system. Hub torquer HA1 and angular sensor HS10 corresponding to the 4-10 axis

were used for instrumentations. The frequency of 0.63 Hz was chosen as it is close to the

identified frequency of the 2nd system mode under investigation. The sampling frequency

was 20 Hz. Each sine-dwell experiment lasted 300 sec.

Figure 3.4-2 shows, for 200 sec, the system responses of the 0.63 Hz sinusoidal exper-

iments. The amplitudes of the inputs were 0.1 nt-m, 0.2 nt-m, 0.3 nt-m, 0.4 nt-m, and

0.5 nt-m. Note that responses for input amplitudes of 0.5 nt-m, 0.4 nt-m, and 0.3 nt-m

have roughly the same peak time for their envelopes, 35 sec. Maximum excursions of the

envelopes are, roughly, 37 mrad, 30 mrad, and 23 mrad. Steady state excursions of the
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envelopes are 27 mrad, 22 mrad, and 17 mrad. These values of the envelopes are in pro-

portion to their respective sine-dwell amplitudes of 5, 4, and 3. In contrast, the envelope

of the response corresponding to a input amplitude of 0.2 nt-m has a peak time of 50 sec,

while that of the 0.1 nt-m input amplitude seems not to peak at all. Their excursion values

are also not consistent with the relative ratio of their input amplitudes. As such, figure

3.4-2 indicated that the system behaves as a linear system at sinusoidal input amplitude

ranging from 0.3 nt-m to 0.5 nt-m.

The same observation can be obtained from table 3.4.1 which lists the phase values

of the system as computed from the sine-dweU data of real and imaginary parts of the

transfer function. The output responses in figure 3.4-2 had indicated that steady states

have been reached at around 200 sec. Computed at around 300 see, the phase values were

indeed near stationary for individual experiments. Table 3.4.1 shows that the phase values

are -199.1, -196.9, -190.3, -185.4, and -70.4 degrees in order of decreasing input amplitudes.

The near constancy of the phases for the first three and maybe four experiments indicates

linearity at those input amplitudes. Also shown in Table 3.4.1 are the modal frequencies

and damping coefficients as calculated by the envelope of the responses. Again, the values

for the first three or four experiments are approximately equal mad an indication of a linear

system. The frequency and damping values were calculated on the simplified analysis that

the 2nd mode is the only mode existed in the system. This explains why they are somewhat

different from that obtained through transfer function curve fitting.

In short, the present investigation concludes that at low actuation levels, the system

tends to be nonlinear. The low bound of the linear range depends on sensor location and

the modal component of interest. The present analysis conducts its model identification as

though the system is linear. It can be argued that the model identified is thus good only

for the level of actuation utilized and has a limit range of validity. Such considerations

underscore the importance of careful system identification.

3.5 Parameter Selection and Variation

This section discusses the underlying reasonings for selecting the nominal values of

spectral estimation parameters and smoothing factor for curve fitting. The effects of pa-

rameter variations from their nominal values on the identification results are also presented.

3.5.1 Spectral Estimation Input Parameters

Except for the 3-6 Hz narrowband experiment, spectral estimation parameters adopted

for present analysis were: MSE=2048, NSE=32768, LSE=1024 AND NFFT=2048. Their

selection were based on the following considerations:

1. The spectral estimation algorithm computes the power spectral density by taking the

Fourier transform of the correlation, with LSE being the number of correlation values

utilized for the computation. The resultant frequency resolution for the power spectral

densities follows to be 1/(LSE*T) where T is the sampling period. For the present

case where the lowest frequency mode is around 0.1 Hz and the sampling frequency is

20 Hz, LSE is selected to be 1024 to achieve the desired resolution of approximately

0.02 Hz.
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Table 3.4.1

Computed Phase Value, Frequency, and Damping Coefficient

at Different Sine-Dwell Input Amplitudes

Sine-Dwell Input

Amplitude (nt-m)

Phase Frequency Damping

(degrees) ( Hz ) Coefficient

0.5 -199.1 0.642 0.006

0.4 -196.9 0.642 0.006

0.3 " -190.3 0.642 0.007

0.2 -185.4 0.64 0.01

0.1 -70.4 0.64 0.03

181



2. The number NFFT is the FFT size (power of 2) used to compute the power spectral

densities from the correlations. Note that with the same LSE, increasing NFFT only

represents a more detailed representation of the same power spectral density estimate,

and not a more accurate estimate of the spectrum. The estimate of the spectrum is

determined solely by the choice of LSE. The minimum value of NFFT is 2*LSE-1. For

the present case, NFFT is selected to be 2*LSE.

3. The number MSE is the section size. Its relevancy lies in the fact that it governs the

number of correlation values generated by the spectral estimation algorithm which is

MSE/2+I. This, together with the fact that LSE=1024 correlation values are to be

used for computing the power spectral densities, leads to the selected value of 2048

for MSE.

4. Finally, the total number of data points, NSE, is to be set. On given NSE, the

algorithm divides the data array of NSE points into sections each consisting of MSE

data points. The correlation values as generated from each section will be averaged

out to yield the final results. The size N thus relates to the standard deviation of the

correlation values and hence that of the power spectrum. To have an accurate estimate

of correlation and power spectral density values, NSE> >MSE is recommended. It was

determined by experiences that NSE=16*MSE=32768 yields quite satisfactory results.

With NSE=32768 and t=0.05 sec for 20 Hz sampling, the experiment run time, which

equals NSE*T, turns out to be 1638.4 sec.

The aforementioned nominal parame_rs are utilized for the analysis of wideband

experiments and the 0-3 Hz narrowband experiments all of which involve the 0.1 Hz mode

in their identification. A different set of spectral estimation parameters was set, however,

for the 3-6 Hz narrowband experiment investigating the 5th system mode which is roughly

5 Hz frequency. As a resolution of roughly 0.1 Hz would suffice for this mode, LSE is set to

be 256. By the same reasoning as above, this subsequently yielded NFFT=512, MSE=512,

and NSE=8192. These were the parameters adopted for spectral analysis in section 3.3.1.

To have a better understanding of their effects on the identification results, input

and output data from the same wideband experiment run as presented in section 3.2.3

was processed adopting different sets of spectral estimation input paramters. First, main

results of section 3.2.3 are repeated here for comparison. Figure 3.5-1, figure 3.5-2, figure

3.5-3, and figure 3.5-4 show respectively the gain of the TFSE Puy/Puu, the gain of the

3 mode identified parametric model, the output error e, and the additive uncertainty A

of the wideband experiment. They were generated using the nominal spectral estimation

parameters of MSE=2048, NSE=32768, LSE=1024, and NFFT=2048, and are the same

as figure 3.2-29, figure 3.2-33, figure 3.2-35, and figure 3.2-37 of section 3.2.3.

The identification process was repeated using the same input and output data but

a different set of spectral estimation parameters of MSE=4096, NSE=32768, LSE=2048,

and NFFT=4096. Figure 3.5-5 shows the TFSE P,,v/Puu. Compared with figure 3.5-1,

it has a finer frequency resolution but is more jittery. This is expected as a larger LSE

yields a finer frequency resolution but also a larger section size MSE which would lead

to a smaller number of averaging sections with NSE kept constant. The spectral data

obtained averaging over this smaller number of sections thus has more peaks and spikes
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in its profiles. Figure 3.5-6 presents the 3 mode identified parametric model through

curve fitting the spectral data of figure 3.5-5. The modal data compare reasonably well

with previous results except maybe for the damping coefficient of the 1st mode. The

reliability of this identified parametric model is indicated in figure 3.5-7 and figure 3.5-8

which show respectively the output error e and additive uncertainty A. They do not show

any improvement over that utilizing the nominal parameters. The additive uncertainty

even shows a slightly higher maximum value of 15.12 db as compared to 11.37 db for the

nominal parameter case. The output error is comparable.

The above comparison indicates that although there is a compromise between fre-

quency resolution and smoothness of the spectral data, for a reasonable selection the curve

fitting algorithm will in effect yield an identified model the reliability of which will be

insensitive to any fine parameter adjustment.

In the above cases, the whole duration of 1638.4 sec of input and output data were used

for analysis. In what follows results obtained by processing only the first 409.6 sec of these

data are presented. They also represent the identification results of the shorter experiment.

The adopted spectral estimation parameters were MSE=2048, NSE=8192, LSE=1024, and

NFFT--2048. Note that the parameters were the same as for the nomimal case, except

that here NSE=8912 which reflects the duration of 409.6 sec. The present case has the

same frequency resolution as before, but with a reduced number of averaging sections.

Hence, more jittery spectral data are expected for the present case, as demonstrated by

figure 3.5-9 which shows the TFSE. In fact, it seems that the spikes may be too strong for

the curve fitting algorithm to handle. This is indeed the case as indicated in figure 3.5-10

which shows in the 3 mode identified parametric model, the algorithm mistook one of the

spikes as a mode. The identification results as obtained yield a large output error and are

unacceptable as an estimate of the system model.

Another analysis which also utilizes the data length of 409.6 sec was performed. This

time the section number is increased at the expense of frequency resolution. The pa-

rameters adopted for spectral estimation were MSE--1024, NSE=8192, LSE=512, and

NFFT--1024. Figure 3.5-11 shows the TFSE P,,y/P,,,,. The smoothness of the spectral

data is improved greatly over that of figure 3.5-9. This is the result of a reduced spectral

data standard deviation due to averaging over an increased number of sections, as well

as plotting against frequency values with wider separation. Figure 3.5-12 shows the 3

mode identified parametric model. The modal data seem to agree in general with that of

the nominal case. Figure 3.5-13 and 3.5.14 show, respectively, the output error and the

additive uncertainty for the identified model. Compared to figure 3.5-3 and figure 3.5-4,

they are inferior than that of the nominal case. Figure 3.5--14 has a maximum value of

22.85 db, more than 2 times the nominal values. The output error e is roughly 30% larger

in amplitude than the nominal case. These results reflect the tradeeff in identification

performance and the length of the identification experiment.

The results in this section underscore the importance of adequate experiment run time

in achieving a certain performance. For short experiments, in order to get any performance

at all one should give more preference to smoothing out the spectral data in the selection

of spectral e._.*!mation parameters. For longer experiment, parameter selection which yields
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reasonable emphasis for both frequency resolution and spectral smoothness is possible. In

this case the identification performance is less dependent on any fine adjustment of the

parameters. As a final note, all analysis in this section adopted a smoothing factor SF

of 0.9 in its curve fitting computation. The effect of varying SF is discussed in the next

section.

3.5.2 Smoothing Factor SF

The automated identification procedures as depicted in figure 3.2-1 involve, for each

assumed modal order, obtaining an initial transfer function estimate through uniform

weighting of the spectral data (W=I in eqn. (2.9-21)), and then generating subsequent

estimates via a non-uniform weighting (W¢I) emphasizing the lower frequency portion of

the spectrum (see Steps 0 through 4 in Section 2.9.4). The converged transfer function

estimate is then adopted as the curve fitted model for the assumed modal order, and the

curve fitted model with the lowest modal order that gives rise to the best possible output

error performance is adopted as the identified model. The non-uniform weighting is com-

puted based on the previous transfer function estimate as well as on the smoothing factor

SF. With SF=I corresponding to uniform weighting, the present investigation adopted the

value of 0.9 for SF by experience. In this section, the effects of adopting different values

for SF are discussed.

For comparison with the SF=0.9 case, the automated identification process was car-

ried out using values at SF=0.7 and 0.5. This yielded identified models with modal order

3, in agreement with the SF=0.9 case. However, some differences were noted. In par-

ticular, when performing curve fitting computation assuming 4 modes, there were times
where utilization of SF=0.7 and SF=0.5 led to transfer function estimates with unstable

low frequency modes, while by experience, SF=0.9 always generated reasonable and well

behaved estimates for all assumed modal orders. This is, however, consistent with theory:

a smaller SF emphasizes poor quality resonance frequency estimates appearing early in the

iterative process. For the lower SF cases, the algorithm attempted very fine modelling of

these false resonances and led to unstable estimates.

The attention now turns to the 3 mode identified parametric models for the adopted

SF values. In theory, lower SF values should result in enhanced identification accuracy

in the vicinity of the resonance frequency peaks. Experiment results indicated that there

although these phenomena occurred as expected, the actual resonance improvement was

small. To demonstrate, in what follows the identified parametric model in section 3.3.1

obtained with the adopted value of SF=0.9 is compared to those obtained with SF=0.7

and SF=0.5. First, results in section 3.3.1 are repeated here for comparison. Figure 3.5-15,

figure 3.5-16, and figure 3.3-17 show, respectively, the 3 mode identified parametric model,

the output error e, and the additive uncertainty A = Pue/P,,u for the 0-3 Hz na_rowband

experiment in section 3.3.1. They are the same as figure 3.2-56, figure 3.2-57, and figure

3.5-58. The identified parametric model in figure 3.5-15 was obtained via the automated

identification procedures with SF=0.9.

To obtain the identified parametric model with SF=0.7, the curve fitting process was

carried out for the assumed modal order of 3. However, this time the identified model in
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figure 3.5-15 was utilized as a starting transfer function estimate instead of that obtained

through uniform weighting. This is because lower SF values usually result in a strong

weighting function, and it is therefore desirable to base the comlbutation on a reliable

transfer function estimate, as is the one in figure 3.5-15. Such practice also tends to speed

up the process of a converging estimate. The identified parametric model was obtained

for the present case after three curve fitting iterations with SF=0.7. Figure 3.5-18, figure

3.5-19, and figure 3.5-20 show respectively the identified model, the output error, and

the corresponding additive uncertainty. A careful comparison of figures 3.5-17 and 3.5-20

shows that although the two cases are very similar, there is a slight improvement in the

SF=0.7 case in the vicinity of the resonance frequency peaks.

Figures 3.5-21 to figure 3.5-23 present the the identification results for SF=0.5. They

respectively show the identified parametric model, output error, and the additive uncer-

tainty. For a similar reason, the identified model obtained by using SF=0.7 as given in

figure 3.5-18 was taken to be the starting estimate here, rather than the one obtained with

uniform weighting. Again, the modal data as presented in figure 3.5-21 is very compara-

ble to those of SF=0.9 and 0.7. However, as expected, the output error and the additive

uncertainty show a slight improvement in the vicinity of the resonance frequencies relative

to the SF=0.9 and SF=0.7 cases.

This section compared the identification results as obtained adopting smoothing fac-

tors of SF=0.9, 0.7, and 0.5. The identified models for the three cases are very comparable

with only small improvement in curve fit accuracy for the lower SF values. As expected

from the theory, these improvements occur in the vicinity of the resonance frequency peaks.

However, offsetting these advantages, using lower SF values often upsets the numerical ro-

bustness of the curve fit algorithm. In particular, low SF values seem to make a difference

in the computations of curve fitted models when assuming an excessive modal order. Un-
stable transfer function estimates were obtained with SF=0.7 and 0.5 when the assumed

modal order is 4. By experience, SF=0.9 always generated reasonable and well behaved

curve fitted results for all cases under investigation. As such, it was adopted as the nominal
value.

3.6 Noise Anomaly

The experiment data so far presented in this chapter are, in fact, from a second set

of experiments conducted on the testbed structure. When the first set of identification

experiments were performed it was observed that there existed high frequency noise in

the amplifiers of both hub sensors, HS1 and HS10. Interaction of this noise with the data

sampling rate resulted in aliased "resonance-like" data between 5 Hz and 6 Hz. As such,

results from this set of experiment were not satisfactory, though valuable experience in

anomaly detection was gained. To correct the situation, an analog filter was put at the

amplifier output. With a cutoff frequency of 80 Hz, the filter dynamics were sufficiently

separated from the structural dynamics, and eliminated the aliased noise.
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For demonstration, figure 3.6-1 shows the response from the HS1 hub angular sensor

without the analog filter. Figure 3.6-2 shows the same with the analog filter

in place and subjected to the same input. The presence of the high frequency noise in

figure 3.6-1 and the improvement in figure 3.6-2 are apparent. In addition, the figures

show that except for the noise, the dynamics of the structure were not changed due to the

addition of the filter. Figure 3.6-3 and figure 3.6-4 compare in more details the noise levels

in the hub sensors. Figure 3.6-3 presents for the HS1 sensor the noise measurement and its

corresponding power spectral density. On the left is shown the case without filter, and on

the right, the case with filter. The power spectral densities were obtained by taking and

processing noise measurements of 1638.4 sec duration adopting nominal spectral estimation

parameters. Figure 3.6-4 presents the same quantities for the HS10 hub sensor. The figures

reveal drastic improvement for the case with the analog filter in place. The noise amplitude

of the HS1 hub sensor was 2 mrad without the filter. The power spectral density showed a

base level of roughly -6 db and a strong modal peak of 38 db at around 6 Hz. This changed

after the filter was put in. The noise amplitude was reduced to 0.05 mrad and the power

spectral density showed a base value of -60 db with a modest modal peak of -38 db. Noise

reduction of HS10 due to addition of the filter is just as drastic as demonstrated in figure

3.6-4.

In this section, identification results for the first set of experiments are presented. They

serve to complement the experimental results of the improved hub sensors described in

previous sections, as well as to demonstrate the performance of the identification algorithms

and procedures under an extremely noisy environment. Only the wideband experimental

results will be presented.

The 1-7 axis results are given first. Figure 3.6-5 shows the 200 sec time history of

the system response as measured by hub sensor HS1 subjected to wideband excitation

input at hub torquer HA10. The co,Tesponding TFSE, generated adopting the nominal

spectral estimation parameters, is shown in figure 3.6-6. Compared to figure 3.2-3 and

3.2.9 of the improved sensor case, the presence of noise in the present data, especially at

high frequency, is obvious. In fact, the noise component is so strong that the 5th mode is

being obscured in figure 3.6-6. Another thing noted is the enhanced damping of the 1st

mode in the figure 3.2-9, which should not have been due to the noise improvement. The

boom of the structure was taken down for servicing during the time when the analog filter

was put in place. Increased damping of the 1st mode was then observed ever since the

boom was replaced, in spite of the fact that great care has been taken to put the boom

back in exactly the same position as before.

Figure 3.6-7 shows the identified parametric model generated with the same automated

identification procedures as depicted before and with SF=0.9. On comparison with figure

3.2-17, while the frequency data are quite comparable, the damping of the 1st mode is

almost doubled for the improved hub sensor case. Figure 3.6-8 and figure 3.6-9 show the

output error and the additive uncertainty. As compared to the noise improved case of

figure 3.2-19 and figure 3.2-21, the errors here seem to be larger with more of the high

frequency components. This is due to the dominant colored noise from the hub sensor

which is not modelled in the identified parametric model and, hence, showing up in e and

A. The errors in the low frequendy region, which reflect the modelling performance of the
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low modes, however, are quite comparable for the two cases.

Similar results for the noisy 4-10 axis HS10 hub sensor are shown in figure 3.6-10

through 3.6-13. Figure 3.6-10 shows the system response as observed from HS10 subjected

to a wideband excitation input at HA1. Figure 3.6-11 shows the corresponding TFSE.

They are compared with figure 3.2-26 and figure 3.2-29 for the improved sensor case.

Same as the 1-7 axis, the 1st mode here shows a lighter damping than before. Obviously,

taking down and putting back the boom have the same effect on both axes. The identified

parametric model is presented in figure 3.6-12. The modal data again comes quite close

to the values as in the improved sensor case, except for the damping coefficient for the

1st mode. The frequency values are slightly different to that of the 1-7 axis for the noisy

sensor case. This reflects the slight non-symmetry of the two axes of the structure which

was also indicated by the results of the improved sensor case. Finally, figure 3.6-13 and

figure 3.6-14 present the output error arid the additive uncertainty. Compared to figure

3.2-35 and figure 3.2-37, they show comparable modelling performance in the low frequency

portion of the spectrum. For the high frequency region, the performance is reduced due

to the presence of colored noise.

In summary, this section shows that except for the increased damping, the modal data

for the system before and after sensor improvement are quite agreeable, even to the extent

of reflecting the slight non-symmetry in the structure. The performance of the present

algorithm in curve fitting low frequency modes was not affected by the presence of strong

•higher frequency noise. The strong high frequency noise was passed on to become a high

frequency component of/k and result in a larger output error. The increased damping of

the 1st mode due to the boom removal and restoration is interesting. A possible physical

explanation is that the hub flexure bearing shifted its position. No matter the cause,

however, such observation does underscore the importance of on-orbit system identification.
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CHAPTER 4. CONCLUSIONS

4.1 A General Perspective

In this study, we have been specifically interested in using the system identification

results to enable the on-line design of robust high performance control systems. The use

of real-time on-orbit information for control design has the potential to allow performance

robustness and control accuracy far beyond that attainable by using nominal system de-

scriptions obtained from ground testing and analysis alone.

The goal of supporting on-line robust control design has been particularly useful in

focusing the identification task for realistic on-orbit testing applications. Rather than

trying to estimate the entire structure, as is typically done in ground structural testing, only

key transfer function parameters and uncertainty bounds are identified as are necessary for

on-line design and tuning of robust controllers. This motivated the approach taken here

of estimating transfer function coefficients as well as using the output error to characterize

the additive uncertainty. This approach avoids recreating in an on-orbit environment

the extensive instrumentation required for ground testing, and makes efficient use of the

actuators and sensors already available on the system. Extensive and time-consuming

testing is also avoided since identification bandwidths only need to be chosen compatible
with control bandwidths.

Considerable experience was gained in developing and experimentally validating the on

orbit frequency domain identification methodology. Overall, the basic results of the present

investigation have been very encouraging and provide many practical insights into the

problem of performing system identification in an on-orbit environment. These practical

issues and other results obtained from both the theoretical and practical developments in

the course of this work on the facility testbed are discussed in the following section.

4.2 Summary

The results of this investigation indicate that with the identification objectives suitably

restricted towards supporting control design efforts, on-orbit identification is a realistic

goal. This effort has successfully identified key transfer function coefficients and additive

uncertainty bounds needed for robust control design efforts. Some of the practical issues

associated with this approach for on-orbit identification are discussed below.

1) The length of the experiment time is driven by the frequency of the lowest mode. This

has strong relevance to the on-orbit time allocated to performing on-orbit identifica-

tion. In this study a 27.3 minute experiment was used in order to curve fit the 0.09

Hz mode with a good resolution.

2) The system identification was designed to operate with some degree of autonomy and

to restrict the "human in the loop" requirements. Decisions are still to be made

concerning the choice of bandwidths, initial model order estimate, and smoothing
factors.
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3) The presentinvestigation consideredidentification of single-input single-output trans-
fer functions. Multiple-input multiple-output systemidentification would also be ac-
commodatedwith the presentschemeby processingeachinput/output pair separately.
More efficient processingis desiredfor the multiple-input multiple-output case.

4) Input signals consideredhere were wideband, narrowband, and sine-dwell processes.
On-line capability of conducting digital filter designis availableto support other input
designs.The issueof "optimal" input designsubject to on-orbit constraints is a topic
for continuing investigation.

5) Numerical problems arose in finding roots of high-order polynomials. This was re-
vealed to be due to the over-samplingof the low frequency modes whoseroots coa-
lescedto l+j0. A specialroutine wasdevelopedfor rootfinding in suchcircumstances.

6) Model order is determined by successivelyincreasing the number of modes in the
curve fit until an adequateoutput error profile is observed. The searchis initialized
by the model order estimate obtained from a PMM test. Sincesearchingby sequential
curve fitting is a time consuming process,an accurate initial estimate of the model
order from the PMM test is desired. In the PMM algorithm, this essentiallyamounts
to proper choice of threshold value (on the determinant or determinant ratios), and
proper treatment of noise disturbance effects. The present implementation of the
PMM test appears to underestimate the model order, as compared to results of the
sequentialcurve fit search.Modifications of the PMM along the lines outlined above
remain to be investigated.

7) Two implementations were developedfor the PMM test. The deterministic algorithm
PMMD (i.e., exact assumingno measurementnoise), gaveconsistently better perfor-

mance than the stochastic algorithm PMMS (which approximates sums by correla-

tions). Evidently, experiments on the order of half-an-hour may not be long enough

to satisfy the infinite time requirement for the stochastic algorithm.

8) Special techniques for Sine-Dwell gain and phase estimation were required to avoid

errors associated with using sampled data sinusoidal inputs. Standard correlation

techniques produced very poor results, particularly with respect to the low frequency

structural modes. A recursive least squares algorithm with exponential forgetting was

developed to ensure robust and accurate estimation for this class of problems.

9) The additive uncertainty _m is estimated by the output error cross-correlation A. This

approach is shown to provide a superior estimation to the additive uncertainty than

the traditional approach of utilization of the curve fitted error r.

10) It is well known that frequency domain curve fitting techniques based on equation

error representations have implicit high frequency emphasis [10]. This problem was

overcome in the present study by using an iterative reweighting scheme. A novel

smoothing technique was also introduced to alleviate the problem of resonances es-

timated early in the sequence reinforcing themselves in the reweighting scheme and

becoming fixed points of the iteration.

11) Experiments were performed on the two hub axes of the JPL/AFAL Flexible Testbed

utilizing the collocated hub torquers and angular sensors. The identified frequencies
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12)

13)

and damping coefficients of the three dominant modes of the 1-7 axis are 0.126 Hz,

0.666 Hz, and 2.68 Hz, and 0.32, 0.0564, and 0.00746. Those of the 4-10 axis are 0.114

Hz, 0.637 Hz, and 2.57 Hz, and 0.4, 0.0364, and 0.0604. The frequency values agree

well with those of the finite element model of the structure, and confirm the slight

nonsymmetry of the two axes. The dynamics of these modes are identified to within

1070 to 30% as indicated by the additive uncertainty estimate A.

There were modes, apparent in the nonparametric estimate h, that were not fitted

in the parametric plant estimate/3. The error resulting from omitting these modes,

however, was no larger than the fitting error of the identified modes. This indicated

that the curve fitting algorithm properly determined their omission and converged to

a reduced-order model which tended to weight all frequencies equally in the final fit.

The damping of the first mode of the system increased after the boom was taken apart

and replaced back. A possible explanation of this change is that the hub bearing had

settled into a different position. Regardless of the cause, however, such observation

serves to underscore the importance of a system identification capability.
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